Theoretical and Applied Climatology

, Volume 97, Issue 3–4, pp 317–325 | Cite as

Stratospheric intrusion index (SI2) from baseline measurement data

  • P. Cristofanelli
  • F. Calzolari
  • U. Bonafè
  • R. Duchi
  • A. Marinoni
  • F. Roccato
  • L. Tositti
  • P. Bonasoni
Original Paper


This work introduces an index to identify deep stratospheric intrusions (SI) from measurement data alone, without requiring additional model-based information. This stratospheric intrusion index (SI2) provides a qualitative description of SI event behaviour by summarizing the information from different tracer variations. Moreover, being independent from any model constraint, the SI2 can also represent a valid tool to help in evaluating the capacity of chemistry-transport and chemistry-climate models in simulating deep stratosphere to troposphere transport. The in situ variations of ozone, beryllium-7 and relative humidity were used to calculate the index. The SI2 was applied on 8-year data recorded at the regional GAW station of Mt. Cimone (2165 m asl; 44.10N, 10.70E: Italy). The comparison of the SI2 behaviour with a pre-existing database obtained by also using model products, permitted us to tune a SI2-threshold value capable of identifying SI events efficiently. In good agreement with previous climatological studies across Europe, at Mt. Cimone, the averaged monthly SI frequency obtained by the SI2 analysis showed a clear seasonal cycle with a winter maximum and a spring-summer minimum. These results suggest that the presented methodology is efficient for both identifying SI events and evaluating their annual frequency at the considered baseline measurement site.


False Alarm Rate Heidke Skill Score Stratospheric Intrusion High Mountain Station Stratospheric Tracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was carried out within the SHARE project (funded by EV-K2-CNR) and was partly supported by the EU-Network of Excellence ACCENT (goce-ct-2003-505337). The authors would like to thank the Mt. Cimone technical staff (Mr. Pio Giambi and the “Magera team”) for their technical support, as well as the Italian Air Force Meteorological Service and CAMM Mt. Cimone for their valuable collaboration. Finally, we are grateful to the two anonymous referees for their valuable comments and suggestions.


  1. Beekmann M, Ancellet G, Megie G (1994) Climatology of tropospheric ozone in southern Europe and its relation with potential vorticity. J Geophys Res 104:301–321Google Scholar
  2. Bonasoni P, Stohl A, Cristofanelli P, Calzolari F, Colombo T, Evangelisti F (2000) Background ozone variations at Mt. Cimone Station. Atmos Environ 34:5183–5189CrossRefGoogle Scholar
  3. Buzzi A, Giovanelli G, Nanni T, Tagliazucca M (1985) A case study of stratospheric ozone descent to the lower troposphere during APLEX. Beitr Phys Atmos 58:339–406Google Scholar
  4. Chevalier A, Gheusi F, Delmas R, Ordónez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326Google Scholar
  5. Collins WJ, Derwent RG, Garnier B, Johnson CE, Sanderson MG, Stevenson DS (2003) Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. J Geophys Res 108, D128528. doi: 10.1029/2002JD002617 CrossRefGoogle Scholar
  6. Cristofanelli P, Bonasoni P, Tositti L, Bonafè U, Calzolari F, Evangelisti F, Sandrini S, Stohl A (2006) A six-year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m a.s.l.). J Geophys Res 111, D03306. doi: 10.1029/2005JD006553 CrossRefGoogle Scholar
  7. Cristofanelli P, Bonasoni P, Carboni G, Calzolari F, Casarola L, Zauli Sajani S, Santaguida R (2007) Anomalous high ozone concentrations recorded at a high mountain station in Italy in summer 2003. Atmos Environ 41:1383–1394CrossRefGoogle Scholar
  8. Crutzen PJ (1973) A discussion to the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl Geophys 106:1385–1399CrossRefGoogle Scholar
  9. Danielsen EF (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potentilal vorticity. J Atmos Sci 25:502–518CrossRefGoogle Scholar
  10. Davies TD, Schuepbach E (1994) Episodes oh high ozone concentrations at the earth’s surface resulting from transport down from the upper troposphere/lower stratosphere: a review and case studies. Atmos Environ 28:53–68CrossRefGoogle Scholar
  11. Elbern H, Kowol J, Sladkovic R, Ebel A (1997) Deep stratospheric intrusions: a statistical assessment with model guided analysis. Atmos Environ 31:3207–3226CrossRefGoogle Scholar
  12. Eyring V, Harris NRP, Rex M, Shepherd TG, Fahey DW, Amanatidis GT, Austin J, Chipperfield MP, Dameris M, De PM, Forster F, Gettelman A, Graf HF, Nagashima T, Newman PA, Pawson S, Prather MJ, Pyle JA, Salawitch RJ, Santer BD, Waugh DW (2005) A strategy for process-oriented validation of coupled chemistry-climate models. Bull Am Meteorol Soc 86(8):1117–1133CrossRefGoogle Scholar
  13. Fischer H, Kormann R, Klüpfel T, Gurk C, Königstedt R, Parchatka U, Mühle J, Rhee TS, Brenninkmeijer CAM, Bonasoni P, Stohl A (2003) Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos Chem Phys 3:725–738Google Scholar
  14. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing, climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  15. Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154CrossRefGoogle Scholar
  16. Gauss M et al (2003) Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J Geophys Res 108(D9), 4292. doi: 10.1029/2002JD002624 CrossRefGoogle Scholar
  17. Gerasopoulos E, Zanis P, Stohl A, Papastefanou C, Ringer W, Tobler L, Hubener S, Gaggler HW, Kanter HJ, Tositti L, Sandrini S (2001) A climatology of 7Be at four high-altitude stations at the Alps and the Northern Apennines. Atmos Environ 35:6347–6360CrossRefGoogle Scholar
  18. Gerasopoulos E, Zerefos CS, Papastefanou C, Zanis P, O’Brien K (2003) Low frequency variability of beryllium-7 surface concentrations over the Eastern Mediterranean. Atmos Environ 37:1745–1756CrossRefGoogle Scholar
  19. Gerasopoulos E, Zanis P, Papastefanou C, Zerefos CS, Ioannidouc A, Wernli H (2006) A complex case study of down to the surface intrusions of persistent stratospheric air over the Eastern Mediterranean. Atmos Environ 40:4113–4125CrossRefGoogle Scholar
  20. Goering MA, Gallus WA Jr, Olsen MA, Stanford JL (2001) Role of stratospheric air in a severe weather event: analysis of potential vorticity and ozone. J Geophys Res 106(D11):11.813–11.823CrossRefGoogle Scholar
  21. Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the “Downward Control” of extra-tropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678CrossRefGoogle Scholar
  22. Henne S, Furger M, Prévôt ASH (2005) Climatology of mountain venting-induced elevated moisture layers in the lee of Alps. J Appl Meteorol 44:620–633CrossRefGoogle Scholar
  23. Hoek GP, Fisher B, Brunekreef E, Lebret E, Hofsschreuder O, Mennem G (1993) Acute effects of ambient ozone on pulmonary function of children in Netherlands. Am Rev Respir Dis 147:11–117Google Scholar
  24. Hoerling MP, Schaack TK, Lenzen AJ (1991) Global objective tropopause analysis. Mon Weather Rev 119:1815–1831CrossRefGoogle Scholar
  25. Jacobson MZ (2002) Atmospheric Pollution: history, science and regulation. Cambridge University Press, Cambridge, 375 ppGoogle Scholar
  26. James PA, Stohl A, Foster C, Eckhardt S, Seibert P, Frank A (2003) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 2, mean climate and seasonal variability. J Geophys Res 108(D12), 8522. doi: 10.1029/2002JD002639 CrossRefGoogle Scholar
  27. Manzato A (2003) A climatology of instability indices derived from Friuli Venezia Giulia soundings, using three different methods. Atmos Res 67–68:417–454CrossRefGoogle Scholar
  28. Meloen J et al (2003) Stratosphere-troposphere exchange: a model and method intercomparison. J Geophys Res 108(D12), 8526. doi: 10.1029/2002JD002274 CrossRefGoogle Scholar
  29. Reed RJ (1995) A study of a characteristic type of upper-level frontogenesis. J Meteorol 12:226–237Google Scholar
  30. Roelofs GJ, Lelieveld J (1997) Model study of influence of cross-tropopause O3 transport on tropospheric O3 levels. Tellus 49B:38–55Google Scholar
  31. Roelofs GJ et al (2003) Intercomparison of tropospheric ozone models: ozone transport in a complex tropopause folding event. J Geophys Res 108(D12), 8529. doi: 10.1029/2003JD003462 CrossRefGoogle Scholar
  32. Scebba F, Canaccini F, Castagna A, Bender J, Weigel H-J, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Poll 142:540–548CrossRefGoogle Scholar
  33. Scheel HE, Sladkovic R, Kanter HJ (1999) Ozone variations at Zugspitze (292 m asl) during 1996–1997. Proceedings of EUROTRAC-2 Symposium 1998, WIT, Southampton, UK, pp 260–263Google Scholar
  34. Sprenger M, Wernli H (2003) A northern hemispheric climatology of cross: tropopause exchange for the ERA15 time period (1979–1993). J Geophys Res 108(D12), 8521CrossRefGoogle Scholar
  35. Staehelin J, Thudium J, Buheler R, Volz-Thomas A, Graber W (1994) Trends in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28:75–78CrossRefGoogle Scholar
  36. Stephenson DB (2000) Use of the “Odds Ratio” for diagnosing forecast skill. Weather Forecast 15:221–232CrossRefGoogle Scholar
  37. Stevenson DS et al (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111(D08), 301. doi: 10.1029/2005JD006338 CrossRefGoogle Scholar
  38. Stohl A, Wotawa G, Seibert P, Kromp-Kolb H (1995) Interpolation errors in wind field as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J Appl Meteorol 34:2149–2165CrossRefGoogle Scholar
  39. Stohl A, Spichtinger-Rakowsky N, Bonasoni P, Feldmann H, Memmesheimer M, Scheel HE, Trickl T, Hubener S, Ringer W, Mandl M (2000) The influence of stratospheric intrusions on alpine ozone concentrations. Atmos Environ 34:1323–1354CrossRefGoogle Scholar
  40. Stohl A et al (2003) Stratosphere-troposphere exchange: a review, and what we have learned from STACCATO. J Geophys Res 108:8516. doi: 10.1029/2002JD002490 Google Scholar
  41. Sudo K, Masaaki Y, Akimoto H (2003) Future changes in stratosphere–troposphere exchange and their impacts on future tropospheric ozone simulations. Geophys Res Lett 30(24), 2256. doi: 10.1029/2003GL018526 CrossRefGoogle Scholar
  42. Thornes JE, Stephenson DB (2001) How to judge the quality and value of weather forecast products. Meteorol Appl 8:307–314CrossRefGoogle Scholar
  43. Tositti L, Hübener S, Kanter HJ, Ringer W, Sandrini S, Tobler L (2004) Intercomparison of sampling and measurement of 7Be in air at four high-altitude locations in Europe. Appl Radiat Isot 61(6):1497–1502CrossRefGoogle Scholar
  44. Tressol M, Ordonez C, Zbinden R, Brioude J, Thouret V, Mari C, Nedelec P, Cammas J-P, Smit H, Patz H-W, Volz-Thomas A (2008) Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmos Chem Phys 8:2133–2150CrossRefGoogle Scholar
  45. Vaughan G, Price JD (1989) Ozone transport into the troposphere in a cut-ff low event: ozone in the atmosphere. Deepak, Hampton, VA, USA, pp 415–146Google Scholar
  46. Wilks S (1995) Statistical methods in the atmospheric sciences: an introduction. Academic, San Diego, CA, 443 ppGoogle Scholar
  47. Yenger JJ, Klonecky AA, Levy H, W. Moxim WJ, Carmichael GR (1999) An evaluation of chemistry’s role in the winter–spring ozone maximum found in the northern midlatitude free troposphere. J Geophys Res 104(D3):3655–3667CrossRefGoogle Scholar
  48. Zanis P, Schuenpach E, Gaeggler HW, Huebener S, Tobler L (1999) Factors controlling beryllium-7 at Jungfraujoch in Switzerland. Tellus 51(4):789–805Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. Cristofanelli
    • 1
  • F. Calzolari
    • 1
  • U. Bonafè
    • 1
  • R. Duchi
    • 1
  • A. Marinoni
    • 1
  • F. Roccato
    • 1
  • L. Tositti
    • 2
  • P. Bonasoni
    • 1
  1. 1.CNR-ISACBolognaItaly
  2. 2.Department of Chemistry, Environmental Radiochemistry LaboratoryBologna UniversityBolognaItaly

Personalised recommendations