Theoretical and Applied Climatology

, Volume 97, Issue 3–4, pp 297–315 | Cite as

Variability of droughts in the Czech Republic, 1881–2006

  • R. Brázdil
  • M. Trnka
  • P. Dobrovolný
  • K. Chromá
  • P. Hlavinka
  • Z. Žalud
Original Paper

Abstract

We analyze droughts in the Czech Republic from 1881–2006 based on the Palmer drought severity index (PDSI) and the Z-index using averaged national temperature and precipitation series for the calculations. The standardized precipitation index (SPI), PDSI and Z-index series show an increasing tendency towards longer and more intensive dry episodes in which, for example, droughts that occurred in the mid-1930s, late 1940s–early 1950s, late 1980s–early 1990s and early 2000s were the most severe. Cycles at periods of 3.4–3.5, 4.2–4.3, 5.0–5.1 and 15.4 years exceeded 95% confidence levels in application of maximum entropy spectral analysis. These are expressed at different intensities throughout the period studied. The occurrence of extremely dry and severely dry months is associated with a higher frequency of anticyclonic situations according to the classification employed by the Czech Hydrometeorological Institute. Principal component analysis documents the importance of the ridge from the Siberian High over Central Europe when extreme and severe droughts in months of the winter half-year are considered in terms of sea-level pressure. In the summer half-year, the ridge of the Azores High over Central Europe is the most important. Drought episodes have a profound effect on national and regional agricultural production, with yields being consistently lower than in normal years, as is documented through the example of spring barley, winter wheat, forage crops on arable land, and hay from meadows. Seasons with pronounced drought during the April–June period (e.g., 1947 and 2000) show the most significant yield decreases. Forests appear to be very vulnerable to long-term drought episodes, as it was the case during the dry years of 1992–1994. This study clearly confirms the statistically significant tendency to more intensive dry episodes in the region, driven by temperature increase and precipitation decrease, which has already been suggested in other studies.

References

  1. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  2. Allan RJ, Ansell TJ (2006) A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  3. Alley WM (1984) The Palmer drought severity index: limitations and assumptions. J Clim Appl Meteorol 23:1100–1109CrossRefGoogle Scholar
  4. Arora VK, Prihar SS, Gajri PR (1987) Synthesis of a simplified water use simulation model for predicting wheat yields. Water Resour Res 23:903–910CrossRefGoogle Scholar
  5. Ash GHB, Shaykewich CF, Raddatz RL (1992) Moisture risk assessment for spring wheat on the eastern prairies: a water-use simulation model. Climatol Bull 26:65–78Google Scholar
  6. Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, London, p 620Google Scholar
  7. Benestad RE (2003) Solar activity and earth’s climate. Springer, Berlin Heidelberg New York, p 287Google Scholar
  8. Blenkinsop S, Fowler HJ (2007) Changes in European drought characteristics projected by the PRUDENCE regional climate models. Int J Climatol 27:1595–1610CrossRefGoogle Scholar
  9. Blinka P (2005) Klimatologické hodnocení sucha a suchých období na území České republiky v letech 1876–2002 (Climatological evaluation of drought and dry periods on the territory of the Czech Republic in the years 1876–2002). Meteorol Zpr 58:10–18Google Scholar
  10. Brádka J, Dřevikovský A, Gregor Z, Kolesár J (1961) Počasí na území Čech a Moravy v typických povětrnostních situacích (Weather on the territory of Bohemia and Moravia in typical weather situations). Hydrometeorologický ústav, Praha, p 31Google Scholar
  11. Brázdil R (1978) Stupeň nerovnoměrnosti ročního chodu srážek (The degree of irregularity of the annual variation of precipitation). Sbor Českoslov Spol Zeměp 83:91–103Google Scholar
  12. Brázdil R, Bíl M (1998) Jev El Niño–Jižní oscilace a jeho možné projevy v polích tlaku vzduchu, teploty vzduchu a srážek v Evropě ve 20. století (El Niño–Southern Oscillation and its effects on air pressure, air temperature and precipitation in Europe in the 20th century). Geografie-Sbor ČGS 103:65–87Google Scholar
  13. Brázdil R, Kolář M, Žaloudík J (1985) Prostorové úhrny srážek na Moravě v období 1881–1980 (Areal precipitation sums in Moravia in the period 1881–1980). Meteorol Zpr 38:87–93Google Scholar
  14. Brázdil R, Štěpánek P, Květoň V (2001) Temperature series of the Czech Republic and its relation to Northern Hemisphere temperatures in the period 1961–1999. In: Brunet India M, López Bonillo D (eds) Detecting and modelling regional climate change. Springer, Berlin Heidelberg New York, pp 69–80Google Scholar
  15. Brázdil R, Dobrovolný P, Elleder L, Kakos V, Kotyza O, Květoň V, Macková J, Müller M, Štekl J, Tolasz R, Valášek H (2005) Historické a současné povodně v České republice (Historical and recent floods in the Czech Republic). Masarykova univerzita, Český hydrometeorologický ústav, Brno Praha, p 370Google Scholar
  16. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2007a) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol doi:10.1002/joc.1718
  17. Brázdil R, Kirchner K, Březina L, Dobrovolný P, Dubrovský M, Halásová O, Hostýnek J, Chromá K, Janderková J, Kaláb Z, Keprtová K, Kotyza O, Krejčí O, Kunc J, Lacina J, Lepka Z, Létal A, Macková J, Máčka Z, Mulíček O, Roštínský P, Řehánek T, Seidenglanz D, Semerádová D, Sokol Z, Soukalová E, Štekl J, Trnka M, Valášek H, Věžník A, Voženílek V, Žalud Z (2007b) Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku (Selected natural extremes and their impacts in Moravia and Silesia). Masarykova univerzita, Český hydrometeorologický ústav, Ústav geoniky Akademie věd České republiky, Brno Praha Ostrava, p 432Google Scholar
  18. Chládová Z, Kalvová J, Raidl A (2007) The observed changes of selected climate characteristics in the period 1961–2000. Meteorol Čas 10:13–19Google Scholar
  19. Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25:3367–3370CrossRefGoogle Scholar
  20. Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130CrossRefGoogle Scholar
  21. Domonkos P, Szalai S, Zoboki J (2001) Analysis of drought severity using PDSI and SPI indices. Idöjárás 195:93–107Google Scholar
  22. Dubrovský M, Nemešová I, Kalvová J (2005) Uncertainties in climate change scenarios for the Czech Republic. Clim Res 29:139–156CrossRefGoogle Scholar
  23. Dubrovský M, Hayes M, Trnka M, Svoboda M, Wilhite DA, Žalud Z, Semerádová D (2007a) Projection of future drought conditions using drought indices applied to GCM-simulated weather series. In: 7th European Meteorological Society Meeting, Madrid, EMS2007-A-00355Google Scholar
  24. Dubrovský M, Svoboda M, Trnka M, Hayes M, Wilhite D, Žalud Z, Hlavinka P (2007b) Application of relative drought indices to assess climate change impact on drought conditions in Czechia. Theor Appl Climatol doi:10.1007/s00704-008-0020-x
  25. Dufková J, Šťastná M (2005) Determination of drought occurrence trend in the area of Southern Moravia and its influence on soil erosion. Meteorol Čas 8:131–136Google Scholar
  26. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099CrossRefGoogle Scholar
  27. Forst P, Caban J, Michalík P (1985) Ochrana lesů a přírodního prostředí (Protection of forests and natural environment). Státní zemědělské nakladatelství, Praha, p 416Google Scholar
  28. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the 20th century. Clim Res 19:193–212CrossRefGoogle Scholar
  29. Gerstengarbe FW, Werner PC (1993) Katalog der Grosswetterlagen Europas nach Paul Hess und Helmuth Brezowsky 1881–1992. Offenbach am Main, Deutscher Wetterdienst, p 249Google Scholar
  30. Gorczyński W (1920) Sur le calcul du degré de continentalisme et son application dans la climatologie. Geogr Ann 2:324–331CrossRefGoogle Scholar
  31. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149–1165Google Scholar
  32. Hess P, Brezowsky H (1977) Katalog der Grosswetterlagen Europas 1881–1976. Berichte des Deutschen Wetterdienstes 113. Deutscher Wetterdienst, Offenbach am Main, p 14Google Scholar
  33. Horváth S (2002) Spatial and temporal patterns of soil moisture variations in a sub-catchment of River Tisza. Phys Chem Earth 27:1051–1062Google Scholar
  34. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, p 881Google Scholar
  35. Hundecha Y, Bárdossy A (2005) Trends in daily precipitation and temperature extremes across western Germany in the second half of the 20th century. Int J Climatol 25:1189–1202CrossRefGoogle Scholar
  36. Huth R, Pokorná L (2004) Trendy jedenácti klimatických prvků v období 1961–1998 v České republice (Trends in eleven climatic elements in the Czech Republic in the period 1961–1998). Meteorol Zpr 57:168–178Google Scholar
  37. Huth R, Pokorná L (2005) Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. Int J Climatol 25:469–484CrossRefGoogle Scholar
  38. IPCC (2007) Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (online). IPCC: Paris, p 18. Available at http://www.ipcc.ch/SPM2feb07.pdf (accessed 2 April 2007)
  39. Jílek J (1957) Atmosférické srážky v Čechách (1876–1956) (Atmospheric precipitation in Bohemia, 1876–1956). Meteorol Zpr 10:133–134Google Scholar
  40. Katalog povětrnostních situací pro území ČSSR (Cataloque of weather situations over the territory of the C.S.S.R). Hydrometeorologický ústav, Praha 1967, p 94Google Scholar
  41. Karl TR (1986) The sensitivity of the Palmer Drought Severity Index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25:77–86CrossRefGoogle Scholar
  42. Livada I, Assimakopoulos VD (2007) Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theor Appl Climatol 89:143–153CrossRefGoogle Scholar
  43. Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592CrossRefGoogle Scholar
  44. Markham CG (1970) Seasonality of precipitation in the United States. Ann Assoc Am Geogr 60:593–597CrossRefGoogle Scholar
  45. Marsh T, Cole G, Wilby R (2007) Major droughts in England and Wales, 1800–2006. Weather 62:87–93CrossRefGoogle Scholar
  46. Minář M (1947) Vliv počasí na zemědělství v jednotlivých měsících (Weather influence on agriculture in individual months). Meteorol Zpr 1:33, 36, 60, 84, 92Google Scholar
  47. Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int J Climatol 25:1149–1171CrossRefGoogle Scholar
  48. Moliba JC, Huth R, Beranová R (2006) Roční chod trendů klimatických prvků v České republice (Annual cycle of trends in climatic elements in the Czech Republic). Meteorol Zpr 59:129–134Google Scholar
  49. Možný M (2004) Vymezení a intenzita sucha na území ČR v letech 1891–2003 (Delimitation and intensity of drought over the Czech Republic between 1891 and 2003). Český hydrometeorologický ústav, Praha, p 88Google Scholar
  50. Ntale HK, Gan TY (2003) Drought indices and their application to East Africa. Int J Climatol 23:1335–1357CrossRefGoogle Scholar
  51. Olberg M (1982) Statistische Analyse meteorologisch-klimatologischer Zeitreihen. Abh Meteorol Dienstes DDR 128:129–141Google Scholar
  52. Olberg M, Rákóczi F (1984) Informationstheorie in Meteorologie und Geophysik. Mit besonderer Berücksichtigung der Maximum-Entropie-Spektralschätzung. Akademie-Verlag, Berlin, p 181Google Scholar
  53. Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202CrossRefGoogle Scholar
  54. Palmer WC (1965) Meteorological drought. Office of climatology research paper 45. Weather Bureau, Washington, D.C., p 58Google Scholar
  55. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the Crop Moisture Index. Weatherwise 21:156–161Google Scholar
  56. Panu US, Sharma TC (2002) Challenges in drought research: some perspectives and future directions. Hydrolog Sci J 47(S):S19–S30CrossRefGoogle Scholar
  57. Pavlík J, Němec L, Tolasz R, Valter J (2003) Mimořádné léto roku 2003 v České republice (Extraordinary summer 2003 in the Czech Republic). Meteorol Zpr 56:161–165, and I–VIIIGoogle Scholar
  58. Petr J (ed) (1987) Počasí a výnosy (Weather and yields). Státní zemědělské nakladatelství, Praha, p 368Google Scholar
  59. Pišoft P, Kalvová J, Brázdil R (2004) Cycles and trends in the Czech temperature series using wavelet transforms. Int J Climatol 24:1661–1670CrossRefGoogle Scholar
  60. Pongrácz R, Bogardi I, Duckstein L (2003) Climatic forcing of droughts: a Central European example. Hydrolog Sci J 48:39–50CrossRefGoogle Scholar
  61. Quiring SM, Papakryiakou TN (2003) An evaluation of agricultural drought indices for the Canadian prairies. Agr Forest Meteorol 118:49–62CrossRefGoogle Scholar
  62. Rebetez M (1999) Twentieth century trends in droughts in southern Switzerland. Geophys Res Lett 26:755–758CrossRefGoogle Scholar
  63. Řezníčková L, Brázdil R, Tolasz R (2007) Meteorological singularities in the Czech Republic in the period 1961–2002. Theor Appl Climatol 88:179–192CrossRefGoogle Scholar
  64. Schär C, Jendritzky G (2004) Hot news from summer 2003. Nature 432:559–560CrossRefGoogle Scholar
  65. Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 25:753–771CrossRefGoogle Scholar
  66. Schönwiese CD (1985) Praktische Statistik für Meteorologen und Geowissenschaftler. Gebrüder Borntraeger, Berlin, Stuttgart, p 231Google Scholar
  67. Schönwiese CD, Staeger T, Trömel S (2004) The hot summer 2003 in Germany. Some preliminary results of a statistical time series analysis. Meteorol Z 13:323–327CrossRefGoogle Scholar
  68. Scian BV (2004) Environmental variables for modeling wheat yields in the southwest pampa region of Argentina. Int J Biometeorol 48:206–212CrossRefGoogle Scholar
  69. Sönmez FK, Kömüscü AÜ, Erkan A, Turgu E (2005) An analysis of spatial and temporal dimension of drought vulnerability in Turkey using Standardized Precipitation Index. Nat Hazards 35:243–264CrossRefGoogle Scholar
  70. Stefan S, Ghioca M, Rimbu N, Boroneant C (2004) Study of meteorological and hydrological drought in southern Romania from observational data. Int J Climatol 24:871–881CrossRefGoogle Scholar
  71. Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83:1181–1190Google Scholar
  72. Štěpánek P (2004) Homogenizace teploty vzduchu na území České republiky v období přístrojových pozorování (Homogenisation of air temperature over the territory of the Czech Republic in the instrumental period). Práce a studie, sešit 32. Český hydrometeorologický ústav, Praha, p 56Google Scholar
  73. Szinell CS, Bussay A, Szentimrey T (1998) Drought tendencies in Hungary. Int J Climatol 18:1479–1491CrossRefGoogle Scholar
  74. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  75. Tolasz R, Míková T, Valeriánová A (2007) Atlas podnebí Česka (Climatic atlas of Czechia). Český hydrometeorologický ústav, Praha Olomouc, p 256Google Scholar
  76. Tomášek M (2000) Půdy České republiky (Soils of the Czech Republic). Česká geologická služba, Praha, p 67Google Scholar
  77. Trigo RM, García-Herrera R, Díaz J, Trigo IF, Valente MA (2005) How exceptional was the early August 2003 heatwave in France? Geoph Res Lett 32:L10701CrossRefGoogle Scholar
  78. Trnka M, Dubrovský M, Svoboda M, Semerádová D, Hayes M, Žalud Z, Wilhite D (2007a) Developing a regional drought climatology for the Czech Republic. Int J Climatol doi:10.1002/joc.1745
  79. Trnka M, Hlavinka P, Semerádová D, Dubrovský M, Žalud Z, Možný M (2007b) Agricultural drought and spring barley yields in the Czech Republic. Plant Soil Environ 53:306–316Google Scholar
  80. Trnka M, Kyselý J, Možný M, Dubrovský M (2008) Changes in Central-European soil-moisture availability and circulation patterns in 1881–2005. Int J Climatol doi:10.1002/joc.1703
  81. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834CrossRefGoogle Scholar
  82. van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European Alpine moisture variability 1800–2003. Int J Climatol 27:415–427CrossRefGoogle Scholar
  83. Wells N, Goddard S, Hayes M (2004) A self-calibrating Palmer drought severity index. J Clim 17:2335–2351CrossRefGoogle Scholar
  84. Wilhite D (ed) (2000) Drought: a global assessment. Vol. 1. Routledge Publishers, London, p 422Google Scholar
  85. Yamoah CF, Walters DT, Shapiro CA, Francis CA, Hayes MJ (2000) Standardized precipitation index and nitrogen rate effects on crop yields and risk distribution in maize. Agr Ecosyst Environ 80:113–120CrossRefGoogle Scholar
  86. Zimolka J (ed) (2006) Ječmen – formy a užitkové směry v České republice (Barley – types and products used in the Czech Republic). Profi-Press, Praha, p 200Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Brázdil
    • 1
  • M. Trnka
    • 2
  • P. Dobrovolný
    • 1
  • K. Chromá
    • 1
  • P. Hlavinka
    • 2
  • Z. Žalud
    • 2
  1. 1.Institute of GeographyMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Agrosystems and BioclimatologyMendel University of Agriculture and ForestryBrnoCzech Republic

Personalised recommendations