Theoretical and Applied Climatology

, Volume 95, Issue 1–2, pp 197–221 | Cite as

Sensitivity of climate models to seasonal variability of snow-free land surface albedo

  • D. RechidEmail author
  • S. Hagemann
  • D. Jacob
Open Access


The seasonal variation of snow-free land surface albedo was integrated into the land surface schemes of the global climate model ECHAM5 and the regional climate model REMO to test the sensitivity of climate models to the advanced surface albedo parameterisation. This new albedo parameterisation was developed in previous studies describing the monthly varying surface albedo fields as a function of vegetation phenology derived from MODIS data products. Three model simulations were performed in order to study the sensitivity of the simulated climate to the seasonal background albedo variations: 1. control simulation with the old time-invariant surface background albedo, 2. experiment 1 with the new mean time-invariant surface background albedo field, 3. experiment 2 with the monthly varying surface background albedo as a function of the leaf area index. The analysis of the simulation results demonstrates the influence of the new albedo parameterisation on the model simulations. Strong effects occur over Europe with the regional and the global model simulations responding differently to seasonal background albedo variations. In contrast to the global simulation, where the large-scale conditions are changed by the new albedo parameterisation, in the regional simulations the circulation patterns within the model domain are not influenced. Here, the external forcing via the lateral boundaries of the regional model domain suppress changes in the large-scale circulation that might occur without the external forcing. In the regional model simulations only local effects occur mainly during the summer season, when the vertical energy exchange at the land surface is enhanced compared to the winter season. The comparison of the regional and global simulation results over Europe reveals that the global model shows higher sensitivity to the changed albedo parameterization with respect to the simulated annual temperature and precipitation cycle than the regional model. For both the regional and the global study the temperature and precipitation deviations from the observations are larger than the differences between the three model simulations.


Regional Climate Model Surface Albedo Global Precipitation Climatology Project Vegetation Phenology Global Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berbet, MLC, Costa, MH 2003Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation changeJ Climate11620992104CrossRefGoogle Scholar
  2. Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett 2, doi: 10.1006/asle.2000.0023Google Scholar
  3. Burke, EJ, Shuttleworth, WJ, Yang, ZL, Mullen, SL, Arain, MA 2000The impact of the parameterization of heterogeneous vegetation on the modeled large-scale circulation in CCM3-BATSGeophys Res Lett27397400CrossRefGoogle Scholar
  4. Chase, TN, Pielke, RA, Kittel, TGF, Nemani, RR, Running, SW 2000Simulated impacts of historical land cover changes on global climate in northern winterClim Dyn1693105CrossRefGoogle Scholar
  5. Dickinson, RE, Hanson, B 1984Vegetation-albedo feedbacksHanson, JETakahashi, T eds. Climate Processes and Climate SensitivityAGUWashington, D.C.180186Google Scholar
  6. Dirmeyer, PA, Shukla, J 1994Albedo as a modulator of climate response to tropical deforestationJ Geophys Res9920,86320,877CrossRefGoogle Scholar
  7. Eidenshink, JC, Faundeen, JL 1994The 1 km AVHRR global land dataset: first stages in implementationInt J Remote Sensing1534433462CrossRefGoogle Scholar
  8. Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. Report 336, Max-Planck-Institute for Meteorology, HamburgGoogle Scholar
  9. Hagemann S, Botzet M, Dümenil L, Machenhauer M (1999) Derivation of global GCM boundary conditions from 1 km land use satellite data. Report 289, Max-Planck-Institute for Meteorology, HamburgGoogle Scholar
  10. Huffman, GJ, Adler, RF, Arkin, A, Chang, A, Ferraro, R, Gruber, A, Janowiak, J, Joyce, RJ, Mcnab, A, Rudolf, B, Schneider, U, Xie, P 1997The Global Precipitation Climatology Project (GPCP) combined precipitation data setBull Amer Meteor Soc78520CrossRefGoogle Scholar
  11. Jacob, D, Podzun, R 1997Sensitivity studies with the regional climate model REMOMeteorol Atmos Phys63119129CrossRefGoogle Scholar
  12. Jacob, D, Andrae, U, Elgered, G, Fortelius, C, Graham, PL, Jackson, SD, Karstens, U, Koepken, C, Lindau, R, Podzun, R, Rockel, B, Rubel, F, Sass, HB, Smith, RND, Van den Hurk, BJJM, Yang, X 2001A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP periodMeteorol Atmos Phys771943CrossRefGoogle Scholar
  13. Lin, ZH, Zeng, QC, Ouyang, B 1996Sensitivity of the IAP two level AGCM to surface albedo variationsTheor Appl Climatol55157162CrossRefGoogle Scholar
  14. Lofgren, BM 1995Surface albedo-climate feedback simulated using two-way couplingJ Climate825432562CrossRefGoogle Scholar
  15. Mitchell, TD, Carter, TR, Jones, PD, Hulme, M, New, M 2004A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100)Tyndall Cent.Norwich, UKWorking Pap. 55Google Scholar
  16. Myhre, G, Myhre, A 2003Uncertainties in radiative forcing to surface albedo changes caused by land use changesJ Climate1615111524Google Scholar
  17. New, M, Hulme, M, Jones, PD 2000Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climateJ Climate1322172238CrossRefGoogle Scholar
  18. Olson JS (1994a) Global ecosystem framework: definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37 ppGoogle Scholar
  19. Olson JS (1994b) Global ecosystem framework: translation strategy. USGS EROS Data Center Internal Report, Sioux Falls, SD, 39 ppGoogle Scholar
  20. Rechid, D, Jacob, D 2006Influence of monthly varying vegetation on the simulated climate in EuropeMeteorol Z1599116CrossRefGoogle Scholar
  21. Rechid D, Raddatz TJ, Jacob D (2007) Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor Appl Climatol (in press)Google Scholar
  22. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM-5: Part I. Model description. Report 349, Max-Planck-Institute for Meteorology, HamburgGoogle Scholar
  23. Rowntree PR, Sangster AB (1986) Modelling the impact of land surface changes on Sahel rainfall. Rep. 9, World Climate Research Programme, GenevaGoogle Scholar
  24. Sardeshmukh, PD, Hoskins, BJ 1987The generation of global rotational flow by steady idealized tropical divergenceJ Atmos Sci4512281251CrossRefGoogle Scholar
  25. Sellers, PJ, Randall, DA, Collatz, GJ, Berry, JA, Field, CB, Dazlich, DA, Zhang, C, Collelo, GD, Bounoua, L 1996aA revised land surface parameterization (SIB2) for atmospheric GCMs: Part I. Model formulationJ Climate9676705CrossRefGoogle Scholar
  26. Sellers, PJ, Los, SO, Tucker, CJ, Justice, CO, Dazlich, DA, Collatz, GJ, Randall, DA 1996bA revised land surface parameterization (SIB2) for atmospheric GCMs: Part II. The gerneration of global fields of terrestrial biophysical parameters from satellite dataJ Climate9706737CrossRefGoogle Scholar
  27. Song, J 1999Phenological influences on the albedo of prairie grassland and crop fieldsInt J Biometeorol42153157CrossRefGoogle Scholar
  28. Tanaka HL, Ishizaki N, Nohara D (2005) Intercomparison of the Intensities and Trends of Hadley, Walker and Monsoon Circulations in the Global Warming Projections. SOLA, 1, 77–80Google Scholar
  29. US Geological Survey (1997) Global land cover characteristics data base.
  30. US Geological Survey (2002) Global land cover characteristics data base version 2.0.
  31. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 Re-analysis. Quart J Roy Meteorol Soc, Oct 2005 Part BGoogle Scholar
  32. Zhou, L, Dickinson, RE, Tian, Y, Zeng, X, Dai, Y, Yang, ZL, Schaaf, CB, Gao, F, Jin, Y, Strahler, A, Myneni, RB, Yu, H, Wu, W, Shaikh, M 2003Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land ModelJ Geophys Res1084488doi: 10.1029/2002JD003326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Max-Planck-Institute for MeteorologyHamburgGermany

Personalised recommendations