Theoretical and Applied Climatology

, Volume 95, Issue 1–2, pp 91–109 | Cite as

Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin

  • H. Feidas
  • G. Kokolatos
  • A. Negri
  • M. Manyin
  • N. Chrysoulakis
  • Y. Kamarianakis


The potential of an infrared-based satellite rainfall algorithm, the well-known Convective-Stratiform technique (CST), to estimate accumulated rainfall in the Mediterranean basin is tested. The CST, calibrated by coincident, physically retrieved rainfall rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the central-eastern Mediterranean region for the twelve-month period September 2004–August 2005. Estimates from this technique are verified over a 1°×1° gridded precipitation dataset, based on rain gauge data only, for different time scales (monthly, seasonal and annual). The comparisons between satellite-derived precipitation estimates and validation data provide a high correlation coefficient (0.88) and low biases only for the summer season. In contrast, the comparison statistics for winter demonstrate the shortcomings of the CST algorithm in reproducing adequately the precipitation field in the mid-latitudes during this season. Although the correlations for spring and annual precipitation are relatively high (0.76 and 0.73, respectively), a strong positive bias exists. Rainfall variability is less adequately reproduced for the autumn, but the errors are within an acceptable range. A comparison test conducted in the different climate zones of the study area indicated that the calibrated CST performs better in the sub-tropical deserts and steppes of northern Africa and in humid, continental climates. Mediterranean climates produce higher correlations for autumn, summer and spring precipitation, whereas humid sub-tropical climates present the lowest correlation coefficients. Finally, the potential of the CST technique in climatic studies was demonstrated by studying the diurnal variability of precipitation at high spatial and temporal resolutions.


Root Mean Square Difference Brightness Temperature Tropical Rainfall Measure Mission Rainfall Rate Mean Absolute Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, RF, Negri, AJ 1988A satellite infrared technique to estimate tropical convective and stratiform rainfallJ Appl Meteor273051CrossRefGoogle Scholar
  2. Adler, RF, Negri, AJ, Keehn, PR, Hakkarinen, IM 1993Estimation of monthly rainfall over Japan and surrounding waters from combination of low-orbit microwave and geosynchronous IR dataJ Appl Meteor32335356CrossRefGoogle Scholar
  3. Arkin, PA 1979The relationship between fractional coverage of high clouds and rainfall accumulation during GATE over B-scale arrayMon Wea Rev10713821387CrossRefGoogle Scholar
  4. Arkin, PA, Meisner, BN 1987The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–1984Mon Wea Rev1155174CrossRefGoogle Scholar
  5. Arkin, PA, Janowiak, J 1991Analysis of the global distribution of precipitationDyn Atmos Oceans16516CrossRefGoogle Scholar
  6. Atlas, D, Ulbrich, CW, Marks, FD,Jr 2002Reply to comment by Yuter SE, Houze RA Jr, on “Partitioning tropical oceanic convective and stratiform rains by draft strength” by Atlas D, et alJ Geophys Res1074006CrossRefGoogle Scholar
  7. Barrett, EC 1970The estimation of monthly rainfall from satellite dataMon Wea Rev98322327CrossRefGoogle Scholar
  8. Barrett, EC, Martin, DW 1981The use of satellite data for rainfall monitoringAcademic PressLondon340Google Scholar
  9. Doneauld, AA, Ionesku-Niscov, S, Priegnitz, DL, Smith, PL 1984The area time integral as an indicator for convective rain volumeJ Climate Appl Meteor23555561CrossRefGoogle Scholar
  10. Ebert, E, Manton, M 1998Performance of satellite rainfall estimation algorithms during TOGA COAREJ Atmos Sci5515371557CrossRefGoogle Scholar
  11. Ebert E (2004) Monitoring the quality of operational and semi-operational satellite precipitation estimates – the IPWG validation/intercomparison study. 2nd IPWG Workshop, October 2004, Monterey, USAGoogle Scholar
  12. Feidas, H 2006Validating three infrared-based rainfall retrieval algorithms for intense convective activity over GreeceInt J Remote Sensing2727872812CrossRefGoogle Scholar
  13. Feidas, H, Kokolatos, G, Negri, A, Manyin, M, Chrysoulakis, N 2006A TRMM-calibrated infrared technique for rainfall estimation: application on rain events over eastern MediterraneanAdv Geosci7181188Google Scholar
  14. Goodison B, Louie P, Yang D (1998) WMO Solid Precipitation Measurement Intercomparison, Final Report. WMO/TD-No. 872, Instruments and Observing Methods No. 67, Geneva 1998, 88 ppGoogle Scholar
  15. Griffith CG, Woodley WL, Browner S, Teijeiro J, Maier M, Martin DW, Stout J, Sikdar DN (1976) Rainfall estimation from geosynchronous satellite imagery during daylight hours. NOAA Technical Report ERC 356-WMPO 7, Washington, DC, USAGoogle Scholar
  16. Griffith, CG, Grube, PG, Martin, DW, Stout, J, Sikdar, DN 1978Rainfall estimation from geosynchronous satellite imagery, visible and infrared studiesMon Wea Rev10611531171CrossRefGoogle Scholar
  17. Griffith, CG, Augustine, JA, Woodley, WL 1981Satellite rain estimation in the US high plainsJ Appl Meteor205366CrossRefGoogle Scholar
  18. Hong, Y, Hsu, K, Sorooshian, S, Gao, X 2004Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification systemJ Appl Meteor4318341852CrossRefGoogle Scholar
  19. Hsu, K, Gao, X, Sorooshian, S, Gupta, HV 1997Precipitation estimation from remotely sensed imagery using an artificial neural networkJ Appl Meteor3611761190CrossRefGoogle Scholar
  20. Janowiak, JE 1992Tropical rainfall: a comparison of satellite-derived rainfall estimates with model precipitation forecasts, climatologies and observationsMon Wea Rev120448462CrossRefGoogle Scholar
  21. Janowiak JE, Xie P, Joyce RJ, Chen M, Yarosh Y (2004) Validation of satellite-derived rainfall estimates and numerical model forecasts of precipitation over United States. 2nd IPWG Workshop, October 2004, Monterey, USAGoogle Scholar
  22. Joyce, R, Janowiak, J, Huffman, G 2001Latitudinally and seasonally dependent Zenith-angle corrections for geostationary satellite IR brightness temperaturesJ Appl Meteor40689703CrossRefGoogle Scholar
  23. Kästner M (2003) Inter-comparison of precipitation estimations using TRMM microwave data and independent data. 3rd GPM Workshop, June 2003, ESTEC, Noordwijk, The Netherlands, pp 24–26Google Scholar
  24. Kästner, M, Torricella, F, Davolio, S 2006Intercomparison of satellite-based and model-based rainfall analysesMeteorol Appl13213223CrossRefGoogle Scholar
  25. Kidd C (2004) Validation of satellite rainfall estimates over the mid-latitudes. 2nd IPWG Workshop, October 2004, Monterey, USAGoogle Scholar
  26. King, PWS, Hogg, WD, Arkin, PA 1995The role of visible data in improving satellite rain-rate estimatesJ Appl Meteor3416081621CrossRefGoogle Scholar
  27. Köppen, W, Geiger, R 1936Das geographische System der KlimateKöppen, WGeiger, R eds. Handbuch der Klimatologie. Bd 1, Teil CVerlag Gebrüder BornträgerBerlin (DE)in GermanGoogle Scholar
  28. Legates DR (1987) A climatology of global precipitation. Publ. in Climatology, vol 40 (1), Newark, DW, 85 ppGoogle Scholar
  29. Levizzani, V, Porcu, F, Prodi, F 1990Operational rainfall estimation using METEOSAT infrared imagery: an application in Italy’s Arno River basin. Its potential and drawbacksESA Journal14313323Google Scholar
  30. Levizzani V, Amorati R, Meneguzzo F (2002) A review of satellite-based rainfall estimation methods. MUSIC.
  31. Lopez, RE, Atlas, D, Rosenfeld, D, Thomas, JL, Blanchard, DO, Holle, RL 1989Estimation of rainfall using the radar echo area time integralJ Appl Meteor2811621175CrossRefGoogle Scholar
  32. Marrocu, M, Pompei, A, Dalu, G, Liberti, GL, Negri, A 1993Precipitation estimation over Sardinia from satellite infrared dataInt J Remote Sensing14115134CrossRefGoogle Scholar
  33. Menz, G 1997Regionalization of precipitation models in east Africa using Meteosat dataInt J Climatol1710111027CrossRefGoogle Scholar
  34. Negri, AJ, Adler, RF, Wetzel, PJ 1984Satellite rain estimation: an analysis of the Griffith-Woodley techniqueJ Climate Appl Meteor23102116CrossRefGoogle Scholar
  35. Negri, AJ, Adler, RF, Xu, L 2002A TRMM calibrated rainfall algorithm applied over BrazilJ Geophys Res10780488062CrossRefGoogle Scholar
  36. Negri AJ, Adler RF, Xu L (2003) A TRMM-calibrated infrared technique for global rainfall estimation. In: Proc. 12th Conf. Satellite Meteorology and Oceanography, February 2003, Long Beach, CA, USA, pp 9–13Google Scholar
  37. Nzeukou, A, Sauvageot, H, Ochou, AD, Kebe, MF 2002Raindrop size distribution and radar parameters at Cape VerdeJ Appl Meteor4210311034Google Scholar
  38. Oh, HJ, Sohn, BJ, Smith, EA, Turk, FJ, Ae-Suk, S, Chung, HS 2002Validating infrared-based rainfall retrieval algorithms with 1-minute spatially dense raingauge measurements over Korean peninsulaMeteorol Atmos Phys81273287CrossRefGoogle Scholar
  39. Petty, GW, Krajewski, WF 1996Satellite estimation of precipitation over landHydrolog Sci41433451CrossRefGoogle Scholar
  40. Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land surface using in-situ gauge-observations. 2nd Workshop of the International Precipitation Working Group, Monterey, October 2004, USAGoogle Scholar
  41. Schumacher, C, Houze, RA,Jr 2003Stratiform rain in the tropics as seen by the TRMM precipitation radarJ Climate1617391756CrossRefGoogle Scholar
  42. Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. Proc. 23rd ACM Nat. Conf., Brandon/Systems Press, Princeton, NJ, pp 517–524Google Scholar
  43. Smith, EA, Lamm, JE, Adler, R, Alishouse, J, Aonashi, K, Barrett, E, Bauer, P, Berg, W, Chang, A, Ferraro, R, Ferriday, J, Goodman, S, Grody, N, Kidd, C, Kniveton, D, Kummerow, C, Liu, G, Marzano, F, Mugnai, A, Olson, W, Petty, G, Shibata, A, Spencer, R, Wentz, F, Wilheit, T, Zipser, E 1998Results of WetNet PIP-2 projectJ Atmos Sci5514831536CrossRefGoogle Scholar
  44. Tarruella, R, Jorge, J 2003Comparison of three infrared satellite techniques to estimate accumulated rainfall over the Iberian PeninsulaInt J Climatol2317571769CrossRefGoogle Scholar
  45. Tenório RS, Kwon B-H (2006) Z-R relationship and a severe rainfall observed by C-band radar in eastern coast of northeastern Brazil. In: Proc. 4th European Conference on Radar in Meteorology and Hydrology. ERAD, Barcelona, September 2006, pp 18–22Google Scholar
  46. Turk FJ, Monterey NRL, Bauer CAP, Ebert E, Arkin PA (2006) Satellite-derived precipitation verification activities within the International Precipitation Working Group (IPWG). 14th Conference on Satellite Meteorology and Oceanography, 29 January–3 February 2006, Atlanta, GA, LindseyGoogle Scholar
  47. Vicente, GA, Scofield, RA, Menzel, WP 1998The operational GOES infrared rainfall estimation techniqueBull Amer Meteor Soc7918831898CrossRefGoogle Scholar
  48. Willmott, CJ, Rowe, CM, Philpot, WD 1985Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouringAmer Cartogr12516CrossRefGoogle Scholar
  49. WMO (1985) Review of requirements for area-averaged precipitation data, surface based and space based estimation techniques, space and time sampling, accuracy and error, data exchange. WCP-100, WMO/TD-No. 115Google Scholar
  50. Xie, P, Arkin, PA 1995An intercomparison of gauge observations and satellite estimates of monthly precipitationJ Appl Meteor3411431160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • H. Feidas
    • 1
  • G. Kokolatos
    • 2
  • A. Negri
    • 3
  • M. Manyin
    • 4
  • N. Chrysoulakis
    • 5
  • Y. Kamarianakis
    • 5
  1. 1.Division of Meteorology-Climatology, Department of GeologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of GeographyUniversity of the AegeanMytileneGreece
  3. 3.NASA/Goddard Space Flight CenterLaboratory for AtmospheresGreenbeltUSA
  4. 4.Science Systems and Applications Inc.LanhamUSA
  5. 5.Foundation for Research and Technology – HELLAS, Regional Analysis DivisionInstitute of Applied and Computational MathematicsHeraklionGreece

Personalised recommendations