Theoretical and Applied Climatology

, Volume 90, Issue 3–4, pp 133–159 | Cite as

South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4

  • R. H. Kripalani
  • J. H. Oh
  • A. Kulkarni
  • S. S. Sabade
  • H. S. Chaudhari
Article

Summary

South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario.

Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AchutaRao K, Covey C, Doutriaux C, Fiorino M, Gleckler P, Phillips T, Sperber K, Taylor K (2004) An appraisal of coupled climate model simulations. In: Bader D (ed) UCRL-TR-202550 Lawrence Livermore National Laboratory, USA, 183 ppGoogle Scholar
  2. AchutaRao, K, Sperber, KR 2006ENSO simulation in coupled ocean-atmosphere models: are the current models better?Clim Dyn27115CrossRefGoogle Scholar
  3. Ashok, K, Guan, Z, Yamagata, T 2001Impact of Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSOGeophys Res Lett2844994502CrossRefGoogle Scholar
  4. Ashrit, RG, Rupa Kumar, K, Krishna Kumar, K 2001ENSO-Monsoon relationships in a greenhouse warming scenarioGeophys Res Lett2817271730CrossRefGoogle Scholar
  5. Bansod, SD, Singh, SV 1995Pre-monsoon surface pressure and summer monsoon rainfall over IndiaTheor Appl Climatol515966CrossRefGoogle Scholar
  6. Behera, SK, Krishnan, R, Yamagata, T 1999Unusual ocean-atmosphere conditions in the tropical Indian ocean during 1994Geophys Res Lett2630013004CrossRefGoogle Scholar
  7. Bhaskaran, B, Mitchell, JFB, Lavery, JR, Lal, M 1995Climatic response of the Indian subcontinent to doubled CO2 concentrationsInt J Climatol15873892CrossRefGoogle Scholar
  8. Chang, CP, Harr, P, Ju, J 2001Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationshipJ Climate1423762380CrossRefGoogle Scholar
  9. Chen, M, Pollard, D, Barron, EJ 2004Regional climate change in East Asia simulated by an interactive atmosphere-soil-vegetation modelJ Climate17557572CrossRefGoogle Scholar
  10. Collins, WD, Bitz, CM, Blackmon, ML, Bonan, GB, Bretherton, CS, Carton, JA, Chang, P, Doney, SC, Hack, JJ, Henderson, TB, Kiehl, JT, Large, WG, McKenna, DS, Santer, BD, Smith, RD 2006The Community Climate System Model Version 3: CCSM3J Climate1921222143CrossRefGoogle Scholar
  11. Covey, C, AchutaRao, KM, Cubasch, U, Jones, P, Lambert, SJ, Mann, ME, Phillips, TJ, Taylor, KE 2003An overview of results from the Coupled Model Intercomparison ProjectGlob Planet Change37103133CrossRefGoogle Scholar
  12. Dai, A 2006Precipitation characteristics in eighteen coupled climate modelsJ Climate1946054630CrossRefGoogle Scholar
  13. Delworth, TL, Broccoli, AJ, Rosati, A, Stouffer, RJ, Balaji, V, Beesley, JA, Cooke, WF, Dixon, KW, Dunne, J, Dunne, KA, Durachta, JW, Findell, KL, Ginoux, P, Gnanadesikan, A, Gordon, CT, Griggies, SM, Gudgil, R, Harrison, MJ, Held, IM, Hemler, RS, Horowitz, LW, Klein, SA, Knutson, TR, Kushner, PJ, Langenhorst, AR, Lee, HC, Lin, SJ, Lu, J, Malyshev, SL, Milly, PCD, Ramaswamy, V, Russell, J, Schwarzkopf, MD, Shevliakova, E, Sirutis, JJ, Spelman, MJ, Stern, WF, Winton, M, Wittenberg, AT, Wyman, B, Zeng, F, Zhang, R 2006GFDL’s CM2 Global coupled climate models – Part 1: Formulation and simulation characteristicsJ Climate19643674CrossRefGoogle Scholar
  14. Diansky, NA, Volodin, EM 2002Simulation of present-day climate with a coupled Atmosphere-Ocean general circulation modelIzv Atmos Ocean Phys (Engl Transl)38732747Google Scholar
  15. Dong M (2001) Introduction to National Climate Center Atmospheric General Circulation Model documentation – basic principles and applications. China Meteorological Press, 152 pp (in Chinese)Google Scholar
  16. Douville, H, Royer, JF, Polcher, J, Cox, P, Gedney, N, Stephenson, DB, Valdes, PJ 2000Impact of CO2 doubling on the Asian summer monsoon: robust versus model-dependent responsesJ Meteor Soc Japan78421439Google Scholar
  17. Fasullo, J 2004Biennial characteristics of Indian monsoon rainfallJ Climate1729722982CrossRefGoogle Scholar
  18. Flato, GM, Boer, GJ, Lee, WG, McFarlane, NA, Ramsden, D, Reader, MC, Weaver, AJ 2000The Canadian Centre for Climate Modeling and Analysis of Global Coupled Model and its climateClim Dyn16451467CrossRefGoogle Scholar
  19. Furevik, T, Bentsen, M, Drange, H, Kindem, IKT, Kvamsto, NG, Sorteberg, A 2003Description and evaluation of the Bergen Climate Model: ARPEGE coupled with MICOMClim Dyn212751CrossRefGoogle Scholar
  20. Gadgil, S, Sajani, S 1998Monsoon precipitation in the AMIP runsClim Dyn14659689CrossRefGoogle Scholar
  21. Gates, WL, Boyle, J, Covey, C, Dease, C, Doutriaux, C, Drach, R, Fiorino, M, Gleckler, P, Hnilo, J, Marlais, S, Phillips, T, Potter, G, Santer, BD, Sperber, KR, Taylor, K, Williams, D 1999An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I)Bull Amer Meteor Soc802955CrossRefGoogle Scholar
  22. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 Climate System Model (Electronic publication). Asoendale: CSIRO Atmospheric Research Technical Paper No. 60, 130 pp (Available at http://www.dar.csiro.au/piblications/gordon_2002a.pdf)
  23. Hosaka, M, Nohara, D, Kitoh, A 2005Changes in snow cover and snow water equivalent due to global warming simulated by a 20 km-mesh Global Atmospheric ModelSOLA19396CrossRefGoogle Scholar
  24. Hu, ZZ, Latif, M, Roeckner, E, Bengtsson, L 2000Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrationsGeophys Res Lett2726812684CrossRefGoogle Scholar
  25. IPCC (2001) Climate Change 2001: The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 ppGoogle Scholar
  26. Johns, TC, Durman, CF, Banks, HT, Roberts, MJ, McLaren, AJ, Ridley, JK, Senior, CA, Williams, KD, Jones, A, Rickard, GJ, Cusack, S, Ingram, WJ, Crucifix, M, Sexton, DMH, Joshi, MM, Dong, B-W, Spencer, H, Hill, RSR, Gregory, JM, Keen, AB, Pardaens, AK, Lowe, JA, Bodes-Salcedo, A, Stark, S, Searl, Y 2006The new Hadley Centre Climate Model: evaluations of coupled simulationsJ Climate1913271353CrossRefGoogle Scholar
  27. Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes H (2004) Systematic optimization and climate simulation of FAMOUS, a fast version of HADCM3. Hadley Centre Technical Note 60, 33 pp (Available at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/HCTN_60.pdf)
  28. Jungclaus, JH, Keenlyside, N, Botzet, M, Haak, H, Luo, JJ, Latif, M, Marotzke, J, Mikolajewicz, U, Roeckner, E 2006Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OMJ Climate1939523972CrossRefGoogle Scholar
  29. K-1 Model Developers (2004) K-1 Coupled GCM (MIROC) description. In: Hasumi H, Emori S (eds) K-1 Tech Report No. 1, Center for Climate System Research, University of Tokyo, National Institute for Environmental Studies, Frontier Research Center for Global Change, 39 pp (Available at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf)
  30. Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, Iredell, M, Saha, S, White, G, Woollen, J, Zhu, Y, Leetmaa, A, Reynolds, B, Chelliah, M, Ebisuzaki, W, Higgins, W, Janowiak, J, Mo, KC, Ropelewski, C, Wang, J, Jenne, R, Joseph, D 1996The NCEP/NCAR 40-year reanalysis projectBull Amer Meteor Soc77437471CrossRefGoogle Scholar
  31. Kang, IS, Jin, K, Wang, B, Lau, KM, Shukla, J, Krishnamurthy, V, Schubert, SD, Waliser, DE, Stern, WF, Kitoh, A, Meehl, GA, Kanamitsu, M, Galin, VY, Satyan, V, Park, CK, Liu, Y 2002Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMsClim Dyn19383395CrossRefGoogle Scholar
  32. Kitoh, A, Yukimoto, S, Noda, A, Motoi, T 1997Simulated changes in the Asian summer monsoon at times of increased atmosphere CO2J Meteor Soc Japan7510191031Google Scholar
  33. Kripalani, RH, Kulkarni, A 1996Assessing the impacts of El Niño and non-El Niño related droughts over IndiaDrought Network News81113Google Scholar
  34. Kripalani, RH, Kulkarni, A 1997aClimatic impact of El Niño/La Niña on the Indian monsoon: a new perspectiveWeather523946Google Scholar
  35. Kripalani, RH, Kulkarni, A 1997bRainfall variability over south-east Asia-connections with Indian monsoon and ENSO extremes: new perspectivesInt J Climatol1711551168CrossRefGoogle Scholar
  36. Kripalani, RH, Kulkarni, A 1999Climatology and variability of historical Soviet snow depth: some new perspectives in snow-Indian monsoon teleconnectionsClim Dyn15475489CrossRefGoogle Scholar
  37. Kripalani, RH, Kulkarni, A 2001Monsoon rainfall variations and tele-connections over South and East AsiaInt J Climatol21603616CrossRefGoogle Scholar
  38. Kripalani, RH, Kulkarni, A, Sabade, SS 2003aWestern Himalayan snow cover and Indian monsoon rainfall: a re-examination with INSAT and NCEP/NCAR dataTheor Appl Climatol74118CrossRefGoogle Scholar
  39. Kripalani, RH, Kulkarni, A, Sabade, SS, Khandekar, ML 2003bIndian monsoon variability in a global warming scenarioNatural Hazards29189206CrossRefGoogle Scholar
  40. Kripalani, RH, Kulkarni, A, Sabade, SS 2005South Asian monsoon precipitation variability: coupled climate model projections under IPCC AR4CLIVAR Exchanges101315Google Scholar
  41. Kripalani, RH, Oh, JH, Chaudhari, HS 2007Response of the East Asian summer monsoon to doubled atmospheric CO2: coupled Climate model simulations and projections under IPCC AR4Theor Appl Climatol87128CrossRefGoogle Scholar
  42. Krishna Kumar, K, Hoerling, M, Rajagopalan, B 2005Advancing dynamical prediction of Indian monsoon rainfallGeophys Res Lett32L08704doi: 10.1029/2004GL021979CrossRefGoogle Scholar
  43. Krishna Kumar, K, Rajagopalan, B, Cane, A 1999On the weakening relationship between the Indian monsoon and ENSOScience28421562159CrossRefGoogle Scholar
  44. Kurihara, K, Ishihara, K, Sasaki, H, Fukuyama, Y, Saitou, H, Takayabu, I, Murazaki, K, Sato, Y, Yukimoto, S, Noda, A 2005Projection of climate change over Japan due to global warming by high-resolution Regional Climate Model in MRISOLA197100CrossRefGoogle Scholar
  45. Lal, M, Bhaskaran, B 1992Greenhouse warming over Indian subcontinentProc Ind Acad Sc (Earth & Planet Sc)1011325Google Scholar
  46. Lal, M, Cubasch, U, Santer, BD 1994Effect of global warming on Indian monsoon simulated with a coupled ocean-atmosphere general circulation modelCurr Sci66430438Google Scholar
  47. Lal, M, Cubasch, U, Voss, R, Waszkewitz, J 1995Effect of transient increase in greenhouse and sulphate aerosols on monsoon climateCurr Sci69752763Google Scholar
  48. Lal, M, Nozawa, T, Emori, S, Harasawa, H, Takahashi, K, Kimoto, M, Abe-Ouchi, A, Nakajima, T, Takemura, T, Numaguti, A 2001Future climate change: implication for Indian summer monsoon and its variabilityCurr Sci8111961207Google Scholar
  49. Lal, M, Whetton, PH, Pittock, AB, Chakraborty, B 1998The greenhouse gas-induced climate change over the Indian subcontinent as projected by general circulation model experimentsTerres Atmos Ocean Sc9673690Google Scholar
  50. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. DKRZ Technical Report No. 18, Deutsches Klimarechenzentrum, Hamburg, Germany, 62 ppGoogle Scholar
  51. Marti O, Braconnot P, Bellier J, Benshile R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Fichefet T, Friedlingstein P, Grandpeix JY, Hourdin F, Krinner G, Levy C, Musat I, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace, Paris, 86 pp (Available at http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4/FILES/DocIPSLCM4.pdf)
  52. May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys Res Lett 29: 10.1029/2001GL013808Google Scholar
  53. May, W 2004Potential future changes in the Indian summer monsoon due to greenhouse warming: analysis of mechanism in a global time-slice experimentClim Dyn22389414CrossRefGoogle Scholar
  54. Meehl, GA 1997The south Asian monsoon and the tropospheric biennial oscillationJ Climate1019211943CrossRefGoogle Scholar
  55. Meehl, GA, Washington, WM 1993South Asian summer monsoon variability in a model with doubled CO2 concentrationScience26011011104CrossRefGoogle Scholar
  56. Meehl, GA, Boer, GJ, Covey, C, Latif, M, Stouffer, RJ 2000The coupled model intercomparison project (CMIP)Bull Amer Meteor Soc81313318CrossRefGoogle Scholar
  57. Meehl, GA, Arblaster, JM 2003Mechanisms for projected future changes in South Asian monsoon precipitationClim Dyn21659675CrossRefGoogle Scholar
  58. Meehl, GA, Arblaster, JM, Tebaldi, C 2005Understanding future patterns of increased precipitation intensity in climate model simulationsGeophys Res Lett32L18719doi:10.1029/2005GL023680CrossRefGoogle Scholar
  59. Oldenborgh van, GJ, Philip, SY, Collins, M 2005El Niño in a changing climate: a multi-model studyOcean Science18195CrossRefGoogle Scholar
  60. Rupa Kumar, K, Ashrit, RG 2001Regional aspects of global climatic change simulation: validation and assessment of climate response over Indian monsoon region to transient increase of greenhouse gases and sulphate aerosolsMausam52229244Google Scholar
  61. Russell, GL, Miller, JR, Rind, D 1995A coupled atmosphere-ocean model for transient climate change studiesAtmosphere-Ocean33683730Google Scholar
  62. Saji, NH, Goswami, BN, Vinayachandran, PN, Yamagata, T 1999A dipole mode in the tropical Indian oceanNature401360363Google Scholar
  63. Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2006) Description and validation of the CNRM-CM3 global coupled model. Clim Dyn (in press)Google Scholar
  64. Schmidt, GA, Ruedy, R, Hansen, JE, Aleinov, I, Bell, N, Bauer, M, Bauer, S, Cairns, B, Canuto, V, Cheng, Y, DelGenio, A, Faluvegi, G, Friend, AD, Hall, TM, Hu, Y, Kelley, M, Kiang, NY, Koch, D, Lacis, AA, Lerner, J, Lo, KK, Miller, RL, Nazarenko, L, Oinas, V, Perlwitz Jan, , Perlwitz Judith, , Rind, D, Romanou, A, Russel, GL, Sato, M, Shindell, DT, Stone, PH, Sun, S, Tausnev, N, Thresher, D, Yao, MS 2006Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis dataJ Climate19153192CrossRefGoogle Scholar
  65. Shukla J (1987) Interannual variability of monsoons. In: Fein JS, Stephens PL (eds) Monsoons. A Wiley Inter-science, pp 399–466Google Scholar
  66. Singh, OP 2001Long term trends in the frequency of monsoonal cyclonic disturbances over north Indian oceanMausam52655658Google Scholar
  67. Sugi, M, Noda, A, Sato, N 2002Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global modelJ Meteor Soc Japan80249272CrossRefGoogle Scholar
  68. Sugi, M, Yoshimura, J 2004A mechanism of tropical precipitation change due to CO2 increaseJ Climate17238243CrossRefGoogle Scholar
  69. Sun, Y, Solomon, S, Dai, A, Portmann, RW 2006How often does it rain?J Climate19916934CrossRefGoogle Scholar
  70. Tanaka, HL, Ishizaki, N, Nohara, D 2005Intercomparison of the intensities and trends of Hadley, Walker and Monsoon Circulations in the Global Warming ProjectionsSOLA17780CrossRefGoogle Scholar
  71. Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by 8 GCMs. Geophys Res Lett 33: doi: 10.1029/2005GL025336Google Scholar
  72. Vecchi, GA, Soden, BJ, Wittenberg, AT, Held, IM, Leetmaa, A, Harrison, MJ 2006Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcingNature4417376CrossRefGoogle Scholar
  73. Vernekar, AD, Zhou, J, Shukla, J 1995The effect of Eurasian snow cover on Indian monsoonJ Climate8248266CrossRefGoogle Scholar
  74. Waliser, DE, Jin, K, Kang, IS, Stern, WF, Schubert, SD, Wu, MLC, Lau, KM, Lee, MI, Krishnamurthy, V, Kitoh, A, Meehl, GA, Galin, VY, Satyan, V, Mandke, SK, Wu, G, Liu, Y, Park, CK 2003AGCM simulations of intra-seasonal variability associated with the Asian summer monsoonClim Dyn21423446CrossRefGoogle Scholar
  75. Wang, B, Kang, IS, Lee, JY 2004Ensemble simulation of Asian–Australian monsoon variability by 11 AGCMsJ Climate17699710Google Scholar
  76. Washington, WM, Weatherly, JW, Meehl, GA, Semtner, AJ,Jr, Bettge, TW, Craig, AP, Strand, WG,Jr, Arblaster, J, Wayland, VB, James, R, Zhang, Y 2000Parallel climate model (PCM) control and transient simulationsClim Dyn16755774CrossRefGoogle Scholar
  77. Webster, PJ, Palmer, TN 1997The past and future of El NiñoNature390562564CrossRefGoogle Scholar
  78. Webster, PJ, Moore, AM, Loschning, JP, Leben, RR 1999Coupled ocean-atmosphere dynamics in the Indian ocean during 1997–1998Nature401356360CrossRefGoogle Scholar
  79. Xie, P, Arkin, PA 1997Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputsBull Amer Meteor Soc7825392558CrossRefGoogle Scholar
  80. Yu, Y, Zhang, X, Guo, Y 2004Global coupled ocean-atmosphere general circulation models in LASG/IAPAdv Atmos Sci21444455CrossRefGoogle Scholar
  81. Yukimoto, S, Noda, A, Kitoh, A, Sugi, M, Kitamura, Y, Hosaka, M, Shibata, K, Maeda, S, Uchiyama, T 2001The new Meteorological Research Institute Coupled GCM (MRI-CGCM2)-Model climate and variabilityPapers Meteor Geophys514788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. H. Kripalani
    • 1
    • 2
  • J. H. Oh
    • 1
  • A. Kulkarni
    • 2
  • S. S. Sabade
    • 2
  • H. S. Chaudhari
    • 1
  1. 1.Integrated Climate System Modeling Laboratory, Department of Environmental and Atmospheric SciencesPukyong National UniversityBusanSouth Korea
  2. 2.Forecasting Research DivisionIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations