Theoretical and Applied Climatology

, Volume 87, Issue 1–4, pp 1–28 | Cite as

Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4

  • R. H. Kripalani
  • J. H. Oh
  • H. S. Chaudhari


The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation.

The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%.

Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AchutaRao K, Covey C, Doutriaux C, Fiorino M, Gleckler P, Phillips T, Sperber K, Taylor K (2004) An appraisal of coupled climate model simulations (Edited by D. Bader) UCRL-TR-202550 Lawrence Livermore National Laboratory, USA, 183 ppGoogle Scholar
  2. AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn (in press-published online DOI 10.1007/S00382-006-0119-7)Google Scholar
  3. Boo K-O, Kwon W-T, Oh J-H, Baek H-J (2004) Response of global warming on regional climate over Korea: An experiment with the MM5 model. Geophys Res Lett 31: doi: 10.1029/2004GL021171Google Scholar
  4. Bougeault, P 1985A simple parameterization of the large-scale effects of cumulus convectionMon Wea Rev11321082121CrossRefGoogle Scholar
  5. Chen, M, Pollard, D, Barron, EJ 2004Regional climate change in East Asia simulated by an interactive atmosphere-soil-vegetation modelJ Clim17557572CrossRefGoogle Scholar
  6. Chung, Y-S, Yoon, M-B, Kim, H-S 2004On climate variations and changes observed in South KoreaClim Change66151161CrossRefGoogle Scholar
  7. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The Community Climate System Model: CCSM3. J Clim (in press)Google Scholar
  8. Covey, C, AchutaRao, KM, Cubasch, U, Jones, P, Lambert, SJ, Mann, ME, Phillips, TJ, Taylor, KE 2003An overview of results from the Coupled Model Inter-comparison ProjectGlob Planet Change37103133CrossRefGoogle Scholar
  9. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim (in press)Google Scholar
  10. Dai, A, Meehl, GA, Washington, WM, Wigley, TML 2001Climate changes in the 21st century over Asia-Pacific region simulated by NCAR CSM and PCMAdv Atmos Sc18639658Google Scholar
  11. Del Genio A, Yao M-S (1993) Efficient cumulus parameterization for long-term climate studies. The GISS scheme. In: Emanuel K, Raymond D (eds) The representation of cumulus convection in numerical models. AMS Meteor Monograph, Amer Meteorol Soc 46: 181–184Google Scholar
  12. Delworth, TL, Broccoli, AJ, Rosati, A, Stouffer, RJ, Balaji, V, Beesley, JA, Cooke, WF, Dixon, KW, Dunne, J, Dunne, KA, Durachta, JW, Findell, KL, Ginoux, P, Gnanadesikan, A, Gordon, CT, Griffies, SM, Gudgil, R, Harrison, MJ, Held, IM, Hemler, RS, Horowitz, LW, Klein, SA, Knutson, TR, Kushner, PJ, Langenhorst, AR, Lee, HC, Lin, SJ, Lu, J, Malyshev, SL, Milly, PCD, Ramaswamy, V, Russel, J, Schwarzkopf, MD, Shevliakova, E, Sirutis, JJ, Spelman, MJ, Stern, WF, Winton, M, Wittenberg, AT, Wyman, B, Zeng, F, Zhang, R 2006GFDL’s CM2 global climate models-Part 1: Formulation and simulation characteristicsJ Clim19643674CrossRefGoogle Scholar
  13. Diansky, NA, Volodin, EM 2002Simulation of present-day climate with a coupled Atmosphere-Ocean general circulation modelIzv Atmos Ocean Phys (Engl. Transl.)38732747Google Scholar
  14. Ding, Y, Chan, JCL 2005The East Asian summer monsoon: an overviewMeteorol Atmos Phys89117142CrossRefGoogle Scholar
  15. Douville H, Salas-Melia D, Tyteca S (2005) On the tropical origin of uncertainties in the global land precipitation response to global warming. Clim Dyn (in press-published online DOI: 10.1007/s00382-005-0088-2)Google Scholar
  16. Flato, GM, Boer, GJ, Lee, WG, McFarlane, NA, Ramsden, D, Reader, MC, Weaver, AJ 2000The Canadian Centre for Climate Modeling and Analysis of Global Coupled Model and its climateClim Dyn16451467CrossRefGoogle Scholar
  17. Furevik, T, Bentsen, M, Drange, H, Kindem, IKT, Kvamsto, NG, Sorteberg, A 2003Description and evaluation of the Bergen Climate Model: ARPEGE coupled with MICOMClim Dyn212751CrossRefGoogle Scholar
  18. Gates, WL, Boyle, J, Covey, C, Dease, C, Doutriaux, C, Drach, R, Fiorino, M, Gleckler, P, Hnilo, J, Marlais, S, Phillips, T, Potter, G, Santer, BD, Sperber, KR, Taylor, K, Williams, D 1999An overview of the results of the Atmospheric Model Inter-comparison Project (AMIP I)Bull Amer Meteor Soc802955CrossRefGoogle Scholar
  19. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 Climate System Model (Electronic publication). Asoendale: CSIRO Atmospheric Research Technical Paper No. 60, 130pp (Available from
  20. Gregory, D, Rowntree, PR 1990A mass flux convection scheme with representation of ensemble characteristics dependent closureMon Wea Rev11818831506CrossRefGoogle Scholar
  21. Hirota, N, Takahashi, M, Sato, N, Kimoto, M 2005Recent climate trends in the East Asia during the Baiu season of 1979–2003SOLA1137140CrossRefGoogle Scholar
  22. Hu, Z-Z, Latif, M, Roeckner, E, Bengtsson, L 2000Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse concentrationsGeophys Res Lett2726812684CrossRefGoogle Scholar
  23. IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 ppGoogle Scholar
  24. Johns T, Durman C, Banks H, Roberts M, McLaren A, Ridley J, Senior C, Williams K, Jones A, Keen A, Rickard G, Cusack S, Joshi M, Ringer M, Dong B, Spencer H, Hill R, Gregory J, Pardaens A, Lowe J, Bodas-Salcedo A, Start S, Searl Y (2005) HadGEM1-Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Hadley Centre Technical Note 55, UK Met Office, 74 pp (Available from
  25. Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes H (2004) Systematic optimization and climate simulation of FAMOUS, a fast version of HADCM3. Hadley Centre Technical Note 60, 33 pp (Available at
  26. Joseph R, Nigam S (2006) ENSO evolution and tele-connections in IPCC’s 20th century climate simulations: Realistic representation? J Clim (in press)Google Scholar
  27. Jungclaus JH, Botzet M, Kaak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J Clim (in press)Google Scholar
  28. K-1 Model Developers (2004) K-1 Coupled GCM (MIROC) description. K-1 Tech Report No. 1, Center for Climate System Research, University of Tokyo, National Institute for Environmental Studies, Frontier Research Center for Global Change (Hasumi and Emori eds), 39 pp (available at
  29. Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, Iredell, M, Saha, S, White, G, Woollen, J, Zhu, Y, Leetmaa, A, Reynolds, B, Chelliah, M, Ebisuzaki, W, Higgins, W, Janowiak, J, Mo, KC, Ropelewski, C, Wang, J, Jenne, R, Joseph, D 1996The NCEP/NCAR 40-year reanalysis projectBull Amer Meteor Soc77437471CrossRefGoogle Scholar
  30. Kang, IS, Jin, K, Wang, B, Lau, KM, Shukla, J, Krishnamurthy, V, Schubert, SD, Waliser, DE, Stern, WF, Kitoh, A, Meehl, GA, Kanamitsu, M, Galin, VY, Satyan, V, Park, CK, Liu, Y 2002Intercomparison of the climatological variations of Asian Summer monsoon precipitation simulated by 10 GCMsClim Dyn19383395CrossRefGoogle Scholar
  31. Kim, BJ, Kripalani, RH, Oh, JH, Moon, SE 2002Summer monsoon rainfall patterns over South Korea and associated circulation featuresTheor Appl Climatol726574CrossRefGoogle Scholar
  32. Kimoto M (2005) Simulated change of the East Asian circulation under global warming scenario. Geophys Res Lett 32: doi: 10.1029/2005GL023383Google Scholar
  33. Kitoh A, Uchiyama T (2006) Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J Meteor Soc Japan 84 (in press)Google Scholar
  34. Kitoh, A, Yukimoto, S, Noda, A, Motoi, T 1997Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2J Meteor Soc Japan7510191031Google Scholar
  35. Kripalani, RH, Kulkarni, A 2001Monsoon rainfall variations and tele-connections over south and East AsiaInt J Climatol21603616CrossRefGoogle Scholar
  36. Kripalani, RH, Singh, SV 1993Large scale aspects of India-China summer monsoon rainfallAdv Atmos Sc107184Google Scholar
  37. Kripalani, RH, Kim, BJ, Oh, JH, Moon, SE 2002Relationship between Soviet snow and Korean rainfallInt J Climatol2213131325CrossRefGoogle Scholar
  38. Kripalani, RH, Kulkarni, A, Sabade, SS 2005aSouth Asian monsoon precipitation variability: coupled climate model projections under IPCC AR4CLIVAR Exchanges101315Google Scholar
  39. Kripalani, RH, Oh, JH, Kang, JH, Sabade, SS, Kulkarni, A 2005bExtreme monsoons over East Asia: Possible role of Indian Ocean Zonal ModeTheor Appl Climatol828194CrossRefGoogle Scholar
  40. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2006) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol (submitted)Google Scholar
  41. Kurihara, K, Ishihara, K, Sasaki, H, Fukuyama, Y, Saitou, H, Takayabu, I, Murazaki, K, Sato, Y, Yukimoto, S, Noda, A 2005Projection of climate change over Japan due to global warming by high-resolution Regional Climate Model in MRISOLA197100CrossRefGoogle Scholar
  42. Lal, M, Harasawa, H 2000Comparison of the present-day climate simulation over Asia in selected coupled atmosphere-ocean global climate modelsJ Meteor Soc Japan78871879Google Scholar
  43. Lal, M, Harasawa, H 2001Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate modelsJ Meteor Soc Japan79219227CrossRefGoogle Scholar
  44. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. DKRZ Technical Report No. 18, Deutsches Klimarechenzentrum, Hamburg, Germany, 62 ppGoogle Scholar
  45. Lu, RY 2001Inter-annual variability of the summertime north Pacific subtropical high and its relation to atmospheric convection over the warm poolJ Meteor Soc Japan79771783CrossRefGoogle Scholar
  46. Lu, RY, Dong, BW 2001Westward extension of the north Pacific subtropical high in summerJ Meteor Soc Japan7912291241CrossRefGoogle Scholar
  47. Marti O, Braconnot P, Bellier J, Benshile R, Bony S, Brockmann P, Cadulle P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Fichefet T, Friedlingstein P, Grandpeix JY, Hourdin F, Krinner G, Levy C, Musat I, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace, Paris, 86pp (Available at
  48. Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32: doi: 10.1029/2005GL023680Google Scholar
  49. Meehl, GA, Boer, GJ, Covey, C, Latif, M, Stouffer, RJ 2000The Coupled model intercomparison project (CMIP)Bull Amer Meteor Soc81313318CrossRefGoogle Scholar
  50. Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multi-model ensemble. J Clim (in press)Google Scholar
  51. Min S-K, Legutke S, Cubasch U, Kwon W-T, Oh J-H, Schlese M (2006) East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J Meteor Soc Japan (in press)Google Scholar
  52. Min, S-K, Park, E-H, Kwon, W-T 2004Future projections of East Asian Climate Change from multi-AOGCM ensembles of IPCC SRES scenario simulationsJ Meteor Soc Japan8211871211CrossRefGoogle Scholar
  53. Nitta, T 1987Convective activities in the tropical western Pacific and their impacts on the northern summer circulationJ Meteor Soc Japan65165171Google Scholar
  54. Oh, JH, Chaudhari, HS, Kripalani, RH 2005Impacts of IODM and ENSO on the East Asian monsoon: simulation through NCAR community atmospheric modelKorean J Agric Forest Meteorol7240249Google Scholar
  55. Oh, JH, Kim, T, Kim, MK, Lee, SH, Min, SK, Kwon, WT 2004Regional climate simulation for Korea using dynamic downscaling and statistical adjustmentJ Meteor Soc Japan8216291643CrossRefGoogle Scholar
  56. Oldenborgh van, GJ, Philip, SY, Collins, M 2005El Nino in a changing climate: a multi-model studyOcean Science18195CrossRefGoogle Scholar
  57. Ramanathan, V, Chung, C, Kim, D, Bettge, T, Buja, L, Kiehl, JT, Washington, WM, Fu, Q, Sikka, DR, Wild, M 2005Atmospheric brown clouds: Impacts on South Asia climate and hydrological cycleProc Nat Acad Sc USA10253265333CrossRefGoogle Scholar
  58. Russell, GL, Miller, JR, Rind, D 1995A coupled atmosphere-ocean model for transient climate change studiesAtmos-Ocean33683730Google Scholar
  59. Saji NH, Xie S-P, Yamagata T (2006) Tropical Indian Ocean variability in the IPCC 20th century climate simulations. J Clim (in press)Google Scholar
  60. Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2006) Description and validation of the CNRM-CM3 global coupled model. Clim Dyn (in press)Google Scholar
  61. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, DelGenio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz Jan, Perlwitz Judith, Rind D, Romanou A, Russel GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao MS (2006) Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J Clim (in press)Google Scholar
  62. Su, BD, Jiang, T, Jin, WB 2006Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, ChinaTheor Appl Climatol83139151CrossRefGoogle Scholar
  63. Sun, Y, Solomon, S, Dai, A, Portmann, R 2006How often does it rain?J Clim19916934CrossRefGoogle Scholar
  64. Tanaka, HL, Ishizaki, N, Nohara, D 2005Intercomparison of the intensities and trends of Hadley, Walker and Monsoon Circulations in the Global Warming ProjectionsSOLA17780CrossRefGoogle Scholar
  65. Tiedtke, M 1993Representation of clouds in large-scale modelsMon Wea Rev12130403061CrossRefGoogle Scholar
  66. Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by 8 GCMs. Geophys Res Lett 33: doi: 10.1029/2005GL025336Google Scholar
  67. Wang, H, Lau, KM 2006Atmospheric hydrological cycle in the tropics in twentieth century coupled climate simulationsInt J Climatol26655678CrossRefGoogle Scholar
  68. Washington, WM, Weatherly, JW, Meehl, GA, Semtner, AJ,Jr, Bettge, TW, Craig, AP, Strand, WG,Jr, Arblaster, J, Wayland, VB, James, R, Zhang, Y 2000Parallel climate model (PCM) control and transient simulationsClim Dyn16755774CrossRefGoogle Scholar
  69. Xie, P, Arkin, PA 1997Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputsBull Amer Meteor Soc7825392558CrossRefGoogle Scholar
  70. Yu, Y, Zhang, X, Guo, Y 2004Global coupled ocean-atmosphere general circulation models in LASG/IAPAdv Atmos Sc21444455CrossRefGoogle Scholar
  71. Yukimoto S, Noda A (2002) Improvements of the Meteorological Research Institute global ocean-atmosphere coupled GCM (MRI-CGCM2) and its climate sensitivity. CGER’s Supercomputer Activity Report No. 10, 37–44, NIES, Japan, 8pp (Available at
  72. Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The new Meteorological Research Institute Coupled GCM (MRI-CGCM2)-Model climate and variability. Papers in Meteorology and Geophysics 51: 47–88 (Available
  73. Zhang, GJ 1994Effects of cumulus convection on the simulated monsoon circulation in a General Circulation ModelMon Wea Rev12220222038CrossRefGoogle Scholar
  74. Zhu C, Lee WS, Kang H, Park CK (2005) A proper monsoon index for seasonal and inter-annual variations of the East Asian monsoon. Geophys Res Lett 32: L02811, doi: 10.1029/2004GL021295Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. H. Kripalani
    • 1
    • 2
  • J. H. Oh
    • 1
  • H. S. Chaudhari
    • 1
  1. 1.Integrated Climate System Modeling Laboratory, Department of Environmental and Atmospheric SciencesPukyong National UniversityBusanSouth Korea
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations