Theoretical and Applied Climatology

, Volume 88, Issue 1–2, pp 43–56 | Cite as

Evaluation of six parameterization approaches for the ground heat flux

  • C. Liebethal
  • T. Foken


There are numerous approaches to the parameterization of the ground heat flux that use different input data, are valid for different times of the day, and deliver results of different quality. Six of these approaches are tested in this study: three approaches calculating the ground heat flux from net radiation, one approach using the turbulent sensible heat flux, one simplified in situ measurement approach, and the force-restore method. On the basis of a data set recorded during the LITFASS-2003 experiment, the strengths and weaknesses of the approaches are assessed. The quality of the best approaches (simplified measurement and force-restore) approximates that of the measured data set. An approach calculating the ground heat flux from net radiation and the diurnal amplitude of the soil surface temperature also delivers satisfactory daytime results. The remaining approaches all have such serious drawbacks that they should only be applied with care. Altogether, this study demonstrates that ground heat flux parameterization has the potential to produce results matching measured ones very well, if all conditions and restrictions of the respective approaches are taken into account.


Soil Moisture Parameterization Approach Ground Surface Temperature Volumetric Soil Moisture Crop Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anandakumar, K, Venkatesan, R, Prabha, TV 2001Soil thermal properties at Kalpakkam in coastal south IndiaProc Indian Acad Sci110239245Google Scholar
  2. Berz G (1969) Untersuchungen zum Wärmehaushalt der Erdoberfläche und zum bodennahen atmosphärischen Transport. Meteorologisches Institut der Universität München, Wissenschaftliche Mitteilungen 16: 94 ppGoogle Scholar
  3. Beyrich F (ed) (2004) Verdunstung über einer heterogenen Landoberfläche: Das LITFASS-2003 Experiment – ein Bericht. Deutscher Wetterdienst, Offenbach a.M., Geschäftsbereich Forschung und Entwicklung, Arbeitsergebnisse 79: 100 pp (ISSN 1430–0281)Google Scholar
  4. Bhumralkar, CM 1975Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation modelJ Appl Meteor1412461258CrossRefGoogle Scholar
  5. Blackadar AK (1976) Modelling the nocturnal boundary layer. Proceedings of the 3rd International Symposium on Atmospheric Turbulence, Diffusion and Air Quality, Boston: 46–49Google Scholar
  6. Braud, I, Noilhan, J, Bessemoulin, P, Mascart, P 1993Bare-ground surface heat and water exchanges under dry conditions: observations and parameterizationBound-Layer Meteor66173200CrossRefGoogle Scholar
  7. De Bruin, HAR, Holtslag, AAM 1982A simple parametrization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith conceptJ Appl Meteor2116101621CrossRefGoogle Scholar
  8. Campbell Scientific Inc (2003) Instruction manual for the HFT3 soil heat flux plate. 12 pp
  9. Cellier, P, Richard, G, Robin, P 1996Partition of sensible heat fluxes into bare soil and the atmosphereAgric Forest Meteorol82245265CrossRefGoogle Scholar
  10. Choudhury, BJ, Idso, SB, Reginato, RJ 1987Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by infrared-temperature based energy balance equationAgric Forest Meteorol39283297CrossRefGoogle Scholar
  11. Clothier, BE, Clawson, KL, Pinter, PJ, Moran, MS, Reginato, RJ, Jackson, RD 1986Estimation of soil heat flux from net radiation during the growth of alfalfaAgric Forest Meteorol37319329CrossRefGoogle Scholar
  12. Deardorff, JW 1978Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetationJ Geophys Res8318891903Google Scholar
  13. Dickinson, RE 1988The force-restore model for surface temperatures and its generalizationsJ Climate110861097CrossRefGoogle Scholar
  14. Fuchs M (1987) Heat flux. In: Klute A (ed) Methods of soil analysis, part 1: Physical and mineralogical methods. Agr Monogr. Madion: ASA and SSSA, 957–968Google Scholar
  15. Fuchs, M, Hadas, A 1972The heat flux density in a non-homogeneous bare loessial soilBound-Layer Meteor3191200CrossRefGoogle Scholar
  16. Gao, Z 2005Determination of soil heat flux in a tibetan short-grass prairieBound-Layer Meteor114165178CrossRefGoogle Scholar
  17. Hillel, D 1998Environmental soil physicsAcademic PressSan Diego771Google Scholar
  18. Horton, R, Wierenga, PJ 1983Estimating the soil heat flux from observations of soil temperature near the surfaceSoil Sci Soc Am J471420CrossRefGoogle Scholar
  19. Horton, R, Wierenga, PJ, Nielsen, DR 1983Evaluation of methods for determining the apparent thermal diffusivity of soil near the surfaceSoil Sci Soc Am J472532CrossRefGoogle Scholar
  20. Idso, SB, Aase, JK, Jackson, RD 1975Net radiation – soil heat flux relations as influenced by soil water content variationsBound-Layer Meteor9113122CrossRefGoogle Scholar
  21. Kasahara, A, Washington, WM 1971General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculationJ Atmos Sci28657701CrossRefGoogle Scholar
  22. Kustas, WP, Daughtry, CST 1990Estimation of the soil heat flux/net radiation ratio from spectral dataAgric Forest Meteorol49205223CrossRefGoogle Scholar
  23. Liang, X, Wood, EF, Lettenmaier, DP 1999Modeling ground heat flux in land surface parameterization schemesJ Geophys Res10495819600CrossRefGoogle Scholar
  24. Liebethal, C, Huwe, B, Foken, T 2005Sensitivity analysis for two ground heat flux calculation approachesAgric Forest Meteorol132253262CrossRefGoogle Scholar
  25. Lin, JD 1980On the force-restore method for prediction of ground surface temperatureJ Geophys Res8532513254Google Scholar
  26. Mauder M, Liebethal C, Göckede M, Leps JP, Beyrich F, Foken T (2005) Processing and quality control of flux data during LITFASS-2003. Bound-Layer Meteor (revised)Google Scholar
  27. Noilhan, J, Planton, S 1989A simple parameterization of land surface processes for meteorological modelsMon Wea Rev117536549CrossRefGoogle Scholar
  28. Ogée, J, Lamaud, E, Brunet, Y, Berbigier, P, Bonnefond, JM 2001A long-term study of soil heat flux under a forest canopyAgric Forest Meteorol106173186CrossRefGoogle Scholar
  29. Passerat de Silans, A, Monteny, BA, Lhomme, JP 1997The correction of soil heat flux measurements to derive an accurate surface energy balance by the Bowen ratio methodJ Hydrol188–189453465CrossRefGoogle Scholar
  30. Santanello, JA, Friedl, MA 2003Diurnal covariation in soil heat flux and net radiationJ Appl Meteor42851862CrossRefGoogle Scholar
  31. Sauer, TJ, Meek, DW, Ochsner, TE, Harris, AR, Horton, R 2003Errors in heat flux measurement by flux plates of contrasting design and thermal conductivityVadose Zone J2580588CrossRefGoogle Scholar
  32. Schotanus, P, Nieuwstadt, FTM, De Bruin, HAR 1983Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuationsBound-Layer Meteor268193CrossRefGoogle Scholar
  33. Stull, RB 1988An introduction to boundary layer meteorologyKluwer Academic PublishersDordrecht666Google Scholar
  34. Verhoef, A 2004Remote estimation of thermal inertia and soil heat flux for bare soilAgric Forest Meteorol123221236CrossRefGoogle Scholar
  35. De Vries, DA 1963Thermal properties of soilsVan Wijk, WR eds. Physics of plant environmentNorth-Holland Publishing CompanyAmsterdam210235Google Scholar
  36. Wang, J, Bras, RL 1999Ground heat flux estimated from surface soil temperatureJ Hydrol216214226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. Liebethal
    • 1
  • T. Foken
    • 1
  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany

Personalised recommendations