Theoretical and Applied Climatology

, Volume 85, Issue 3–4, pp 131–148 | Cite as

Spectral radiance and sky luminance in Antarctica: a case study

  • S. Wuttke
  • G. Seckmeyer
Article

Summary

Sky luminance and spectral radiance has been characterised at Neumayer, Antarctica for selected situations during the austral summer 2003/04. Luminance has also been measured at Boulder, Colorado, USA in June 2003. The high reflectivity of the surface (albedo) in Antarctica, reaching values up to 100% in the ultraviolet (UV) and visible part of the solar spectrum due to snow cover, modifies the radiation field considerably when compared to mid-latitudes. A dependence of luminance and spectral radiance on solar zenith angle (SZA) and surface albedo has been identified. For snow and cloudless sky, the horizon luminance exceeds the zenith luminance by as much as a factor of 8.2 and 7.6 for a SZA of 86° and 48°, respectively. In contrast, over grass this factor amounts to 4.9 for a SZA of 86° and a factor of only 1.4 for a SZA of 48°. Thus, a snow surface with high albedo can enhance horizon brightening compared to grass by a factor of 1.7 for low sun at a SZA of 86° and by a factor of 5 for high sun at a SZA of 48°. For cloudy cases, zenith luminance and radiance exceed the cloudless value by a factor of 10 due to multiple scattering between the cloud base and high albedo surface. Measurements of spectral radiance show increased horizon brightening for increasing wavelengths and generally confirm the findings for luminance. Good agreement with model results is found for some cases; however there are also large deviations between measured and modelled values especially in the infrared. These deviations can only partly be explained by measurement uncertainties; to completely resolve the differences between model and measurement further studies need to be performed, which will require an improvement of modelling the spectral radiance. From the present study it can be concluded that a change in albedo conditions, which is predicted as a consequence of climate change, will significantly change the radiation conditions in polar regions as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bais, AF, Gardiner, BG, Slaper, H, Blumthaler, M, Bernhard, G, McKenzie, R, Webb, AR, Seckmeyer, G, Kjeldstad, B, Koskela, T, Gröbner, J, Kerr, JB, Kazadsis, S, Leszczynski, K, Wardle, D, Brogniez, C, Josefsson, C, Gillotay, D, Reinen, H, Weihs, P, Svenoe, T, Eriksen, P, Kuik, F, Redondas, A 2001The SUSPEN intercomparison of ultraviolet spectroradiometersJ Geophys Res1061250912526CrossRefGoogle Scholar
  2. Bernhard, G, Seckmeyer, G 1997New entrance optics for solar spectral UV measurementsPhotochem Photobiol65923930Google Scholar
  3. Bernhard, G, Seckmeyer, G 1999Uncertainty of measurements of spectral solar UV irradianceJ Geophys Res1041432114345CrossRefGoogle Scholar
  4. Bernhard G, Booth C, Ehramjian J (2002) Comparison of measured and modelled spectral ultraviolet irradiance at Antarctic stations used to determine biases in total ozone data from various sources. In: Slusser J, Herman J, Gao W (eds) Ultraviolet ground and space-based measurements, models and effects. Vol. 4482 of Proceedings of SPIE, Bellingham, Washington, D.C., pp 115–126Google Scholar
  5. Bernhard G, Booth C, Ehramjian J (2004) Version 2 data of the National Science Foundations Ultraviolet Radiation Monitoring Network: South Pole. J Geophys Res 109: doi:10.1029/2004JD004937Google Scholar
  6. Blumthaler, M, Gröbner, J, Huber, M, Ambach, W 1996Measuring spectral and spatial variations of UVA and UVB sky radianceGeophys Res Lett23547550CrossRefGoogle Scholar
  7. Dahlback, A, Stamnes, K 1991A new spherical model for computing the radiation field available for photolysis and heating at twilightPlanet Space Sci39671683CrossRefGoogle Scholar
  8. DIN 5031 (1982) Strahlungsphysik im optischen Bereich und Lichttechnik. Beuth Verlag, 8 ppGoogle Scholar
  9. Edwards DP (1992) GENLN2: A general line-by-line atmospheric transmittance and radiance model: Version 3.0 description and users guide, Tech. Rep. NCAR/TN-367 + STR, National Center for Atmospheric Research (NCAR), Boulder, ColoradoGoogle Scholar
  10. Eltermann K-U (1968) UV, visible and IR attenuation for altitudes to 50 km, Tech. Rep. AFCRL-68-0153, Air Force Cambridge Research Laboratories, Bedford, MA, USAGoogle Scholar
  11. Feister, U, Grewe, R 1995Spectral Albedo Measurements in the UV and visible region over different types of surfacesPhotochem Photobiol62736744Google Scholar
  12. Grant, R, Heisler, G 1997Obscured overcast sky radiance distributions for ultraviolet and photosynthetically active radiationJ Appl Meteor3613371345CrossRefGoogle Scholar
  13. Grant, R, Heisler, G, Gao, W 1997aClear sky radiance distributions in ultraviolet wavelength bandsTheor Appl Climatol56123135CrossRefGoogle Scholar
  14. Grant, R, Heisler, G, Gao, W 1997bUltraviolet sky radiance distributions of translucent overcast skiesTheor Appl Climatol58129139CrossRefGoogle Scholar
  15. Gröbner J (1996) Ultraviolet solar radiance measurements using a high precision spectroradiometer. PhD Thesis, Naturwissenschaftliche Fakultät der Leoplold-Franzens-Universität Innsbruck, Innsbruck, Austria: 101 ppGoogle Scholar
  16. Huber M, Blumthaler M, Schreder J, Schallhart B, Lenoble J (2004) Effect of inhonogeneous surface albedo on diffuse UV sky radiance at a highaltitude site. J Geophys Res 109: doi:10.1029/2003JD004013Google Scholar
  17. Karsten, U, Bischof, K, Hanelt, D, Wiencke, D 1999The effect of ultraviolet radiation on photosynthesis an ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta)Physiologia Plantarum1055866CrossRefGoogle Scholar
  18. Kiedron, PW, Michalsky, JJ, Berndt, JL, Harrison, LC 1999Comparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometersAppl Opt3824322439Google Scholar
  19. Kurudz R (1992) Synthetic infrared spectra. In: Proceedings of the 154th Symposium of the International Astronomical Union (IAU), Tuscon, Arizona. Kluwer, Acad., Norwell, MA, 1365–1368Google Scholar
  20. Kylling, A, Dahlback, A, Mayer, B 2000The effect of clouds and surface albedo on UV irradiances at a high latitude siteGeophys Res Lett2714111414CrossRefGoogle Scholar
  21. Lenoble, J 1993Atmospheric radiative transferA. Deepak PublishingHampton, VA532Google Scholar
  22. Lenoble, J 1998Modelling of the influence of snow reflectance on ultraviolet irradiance for cloudless skyAppl Opt3724412447Google Scholar
  23. Lenoble J (2004) Importance of polaristion in calculations of radiance and irradiance. In: Seckmeyer G, Martin T, Ali T (eds) European database for UV climatology and evaluation. Final report to the commission of the European communities, contract No. EVK2-CT-199900028, 100 ppGoogle Scholar
  24. Liu, Y, Voss, K 1997Polarized radiance distribution measurements of skylight. II. Experiment and dataAppl Opt3687538764Google Scholar
  25. Mayer, B, Seckmeyer, G, Kylling, A 1997Systematic long-term comparison of spectral UV measurements and UVSPEC modelling resultsJ Geophys Res10287558767CrossRefGoogle Scholar
  26. Mayer, B, Kylling, A 2005Technical note: The libRadtran software package for radiative transfer calculations description and examples of useAtmos Chem Phys Discuss513191381CrossRefGoogle Scholar
  27. McPeters, RD, Labow, GJ 1996An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS Version 7 ozone data by comparison with the Dobson networkGeophys Res Lett2336953698CrossRefGoogle Scholar
  28. Meister G, Abel p, Carder K, Chapin A, Clark D, Cooper J, Davis C, English D, Fargion G, Feinholz M, Frouin R, Hoge F, Korwan D, Lanzin G, McClain C, McLean S, Menzies D, Poteau A, Robertson J, Sherman J, Voss K, Yungel J (2003) The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March–November 2002, report NASA/TM-2003, Greenbelt, Maryland: Goddard Space Flight Center, 65 ppGoogle Scholar
  29. Mishchenko, MI, Lacis, AA, Travis, LD 1994Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheresJ Quant Spectrosc Radiat Transfer51491510CrossRefGoogle Scholar
  30. Mueller, J, Pietras, C, Hooker, S, Austin, R, Miller, M, Knobelspiesse, K, Fouin, R, Holben, B, Voss, K 2003Instrument specifications, characterization and calibration, ocean optics protocols for satellite ocean color sensor validation revision 4Goddard Space Flight CenterGreenbelt, Maryland57Google Scholar
  31. Nichol, S, Pfister, G, Bodeker, G, McKenzie, R, Vood, S, Bernhard, G 2003Moderation of cloud reduction of UV in the Antarctic due to high surface albedoJ Appl Meteor4211741183CrossRefGoogle Scholar
  32. Piel C (2004) Variability of chemical and physical parameters of aerosol in the Antarctic troposphere. Reports on Polar and Marine Research 476. Bremerhaven, Germany: Alfred Wegener Institute for Polar and Marine Research, 157 ppGoogle Scholar
  33. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Mathson P, Midgley P, Wang M (2001) Atmosperic chemistry and greenhouse gases in climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp 239–287Google Scholar
  34. Ricchiazzi, P, Young, S, Gautier, C, Sowle, D 1998A research and teaching software tool for plane-parallel radiative transfer in the Earths atmosphereBull Amer Meteor Soc7921012114CrossRefGoogle Scholar
  35. Schwander, H, Mayer, B, Ruggaber, A, Albold, A, Seckmeyer, G, Köpke, P 1999Method to determine snow albedo values in the UV for radiative transfer modellingAppl Opt3838693875CrossRefGoogle Scholar
  36. Seckmeyer G (1997) Die genaue Messung und Simulation der solaren UV-Strahlung, Habilitationsschrift, Technische Universität Ilmenau, 116 ppGoogle Scholar
  37. Seckmeyer G, Bais A, Bernhard G, Blumthaler M, Eriksen P, McKenzie RL, Roy C, Miyauchi M (2001) Instruments to measure solar ultraviolet radiation, part I: spectral instruments. WMOGAW report 126, 30 ppGoogle Scholar
  38. Stamnes, K, Tsay, SC, Wiscombe, W, Jayaweera, K 1988Numerically stable algorithm for discreteordinate-method radiative transfer in multiple scattering and emitting layered mediaAppl Opt2725022509CrossRefGoogle Scholar
  39. Takao, T, Aono, M, Kishi, T, Sakurai, K, Ijima, O, Takawa, M, Narita, O, Shitamichi, M 1999Ultraviolet spectral irradiance observations at Syowa Station, Antarctica 1991–1996The Geophysical Magazine Series295107Google Scholar
  40. Tregenza, P 1987Subdivision of the sky hemisphere for luminance measurementsLightning Research and Technologies191314CrossRefGoogle Scholar
  41. van Weele, M, Martin, TJ, Blumthaler, M, Brogniez, C, den Outer, PN, Engelsen, O, Lenoble, J, Mayer, B, Pfister, G, Ruggaber, A, Walravens, B, Weihs, P, Gardiner, BG, Gillotay, D, Haferl, D, Kylling, A, Seckmeyer, G, Wauben, WMF 2000From model intercomparison toward benchmark UV spectra for six real atmospheric casesJ Geophys Res10549154925CrossRefGoogle Scholar
  42. Weihs, P, Webb, A, Hutchinson, S, Middelton, G 2000Measurements of the diffuse UV sky radiance during broken cloud conditionsJ Geophys Res10549374944CrossRefGoogle Scholar
  43. Wuttke S, Benhard G, Ehramjian J, McKenzie R, Johnston P, ONeill M, Seckmeyer G (2005) New spectroradiometers complying with the NDSC standards. J Atmos Oceanic Technol (in press)Google Scholar
  44. Wuttke S, Seckmeyer G, König-Langlo G (2005a) Measurements of spectral snow albedo at Neumayer, Antarctica. Annales Geophysicae (accepted)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Wuttke
    • 1
  • G. Seckmeyer
    • 2
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institute of Meteorology and Climatology, University of HannoverGermany

Personalised recommendations