Theoretical and Applied Climatology

, Volume 84, Issue 1–3, pp 171–178 | Cite as

Sea-town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface

  • A. Lemonsu
  • G. Pigeon
  • V. Masson
  • C. Moppert


3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.


Horizontal Resolution Vertical Structure Atmospheric Model Complete Evaluation Urban Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bougeault, P, Lacarrère, P 1989Parameterization of orography-induced turbulence in a meso-beta-scale model.Mon Wea Rev11718721890Google Scholar
  2. CORINE land cover, technical guide (1993) Technical Report EUR 1285 EN, Office for the official publications of the european communities, LuxembourgGoogle Scholar
  3. Cros, B, Durand, P, Prejafon, E, Kottmeïer, C, Perros, PE, Peuch, VH, Ponche, JL, Robin, D, Saïd, F, Toupance, G, Wortham, H 2004The ESCOMPTE Program: An overview.Atmos Research69241279Google Scholar
  4. Cuxart, J, Bougeault, P, Redelsperger, JL 2000A turbulence scheme allowing for mesoscale and large-eddy simulations.Quart J Roy Meteor Soc126130CrossRefGoogle Scholar
  5. Deardorff, JW 1974Three-dimensional numerical study of turbulence in an entraining mixed layer.Bound-Layer Meteor7199216Google Scholar
  6. Delbarre, H, Augustin, P, Saïd, F, Campistron, B, Benech, B, Lohou, F, Puygrenier, V, Moppert, C, Cousin, F, Freville, P, Prejafon, E 2005Ground-based remote sensing observation of the complex behaviour of the Marseille boundary layer during ESCOMPTE.Atmos Research74403433Google Scholar
  7. Kusaka, H, Kimura, F, Hirakuchi, H, Mizutori, M 2000The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area.J Meteor Soc Japan78405420Google Scholar
  8. Lafore, JP, Stein, J, Asencio, N, Bougeault, P, Ducrocq, V, Duron, J, Fischer, C, Héreil, P, Mascart, P, Masson, V, Pinty, JP, Redelsperger, JL, Richard, E, Vila-Guerau de Arellano, J 1998The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation.Ann Geophys1690109Google Scholar
  9. Lemonsu, A, Grimmond, CSB, Masson, V 2004Modelling of the surface energy budget of an old Mediterranean city core.J Appl Meteorol43312327CrossRefGoogle Scholar
  10. Martilli, A 2003A two-dimensional numerical study of the impact of the city on atmospheric circulation and pollutant dispersion in a coastal environment.Bound-Layer Meteor10891119CrossRefGoogle Scholar
  11. Martilli, A, Clappier, A, Rotach, MW 2002An urban surface exchange parameterization for mesoscale models.Bound-Layer Meteor104261304CrossRefGoogle Scholar
  12. Martilli, A, Roulet, YA, Junier, M, Kirchner, F, Rotach, MW, Clappier, A 2001On the impact of the urban surface exchange parameterisations on air quality simulations: the Athens case.Atmos Environ3742174231Google Scholar
  13. Masson, V 2000A physically-based scheme for the urban energy budget in atmospheric models.Bound-Layer Meteor94357397CrossRefGoogle Scholar
  14. Masson, V, Champeaux, JL, Chauvin, F, Meriguet, C, Lacaze, R 2003A global data base of land surface parameters at 1 km resolution in meteorological and climate models.J Climate1612611282Google Scholar
  15. Mestayer, P, Durand, P,  et al. 2005The Urban Boundary Layer field experiment over Marseille UBL/CLU-ESCOMPTE: experimental set-up and first results.Bound-Layer Meteor114315365CrossRefGoogle Scholar
  16. Noilhan, J, Planton, S 1989A simple parameterization of land surface processes for meteorological models.Mon Wea Rev117536549Google Scholar
  17. Ohashi, Y, Kida, H 2002Effects of mountains and urban areas on daytime local-circulations in the Osaka and Kyoto regions.J Meteor Soc Japan80539560CrossRefGoogle Scholar
  18. Pigeon G, Lemonsu A, Barrié J, Masson V, Durand P (2005) Urban surface network in a coastal city: network optimisation using numerical simulations and analyses of urban thermodynamic island. Bound-Layer Meteor (Submitted)Google Scholar
  19. Yoshikado, H 1992Numerical study of the daytime urban effect and its interaction with the sea breeze.J Appl Meteor3111461164Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • A. Lemonsu
    • 1
  • G. Pigeon
    • 1
  • V. Masson
    • 1
  • C. Moppert
    • 2
  1. 1.Centre National de Recherches MétéorologiquesMétéo-FranceFrance
  2. 2.Laboratoire d’Aérologie, Observatoire Midi-PyrénéesFrance

Personalised recommendations