Theoretical and Applied Climatology

, Volume 84, Issue 1–3, pp 103–115 | Cite as

Temporal variations in heat fluxes over a central European city centre

  • B. Offerle
  • C. S. B. Grimmond
  • K. Fortuniak
  • K. Kłysik
  • T. R. Oke


Energy fluxes have been measured over an area near the centre of the city of Łódź, Poland, since November 2000. The site was selected because the building style (surface cover and morphology) is typical of European cities, yet distinct from the majority of cities where energy balance observations have been studied thus far. The multi-year dataset permits consideration of temporal changes in energy balance partitioning over a wide range of seasonal and synoptic conditions and of the role of heat storage and anthropogenic fluxes in the energy balance. Partitioning of net radiation into the turbulent fluxes is consistent in the two years, with the largest differences occurring due to differing precipitation. The monthly ensemble diurnal cycles of the turbulent fluxes over the two years are similar. The largest differences occur during the July–September period, and are attributable to greater net radiation and lower rainfall in 2002. The latent heat flux accounts for approximately 40% of the turbulent heat transfer on an annual basis. The average daily daytime Bowen ratio and its variability are slightly reduced during the summer (growing) season. Anthropogenic heat is a significant input to the urban energy balance in the winter. The fluxes observed in this study are consistent with results from other urban sites.


Heat Flux Energy Balance Latent Heat Flux Turbulent Flux European City 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnfield, AJ 2003Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island.Int J Climatol23126CrossRefGoogle Scholar
  2. Christen A, Vogt R, Rotach MW, Parlow E (2002) First results from BUBBLE II: partitioning of turbulent heat fluxes over urban surfaces. Preprints. Fourth Symp. on the urban environment, 20–24 May 2002, Norfolk, Virginia. Amer Meteor Soc, pp 105–106Google Scholar
  3. Ellefsen, R 1990Mapping and measuring buildings in the canopy boundary layer in ten U.S. cities.Energ Buildings15–1610251049Google Scholar
  4. Finnigan, JJ 2004A re-evaluation of long-term flux measurement techniques Part II: coordinate systems.Bound-Layer Meteor113141CrossRefGoogle Scholar
  5. Grimmond, CSB 1992The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions.Int J Climatol12481497Google Scholar
  6. Grimmond, CSB, Oke, TR 1999aHeat storage in urban areas: observations and evaluation of a simple model.J Appl Meteor38922940Google Scholar
  7. Grimmond, CSB, Oke, TR 1999bAerodynamic properties of urban areas derived from analysis of surface form.J Appl Meteor3812621292Google Scholar
  8. Grimmond, CSB, Oke, TR 2002Turbulent heat fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS).J Appl Meteor41792810CrossRefGoogle Scholar
  9. Kaimal, JC, Finnigan, JJ 1994Atmospheric boundary layer flows: their structure and measurement.Oxford University PressNew York289Google Scholar
  10. Kłysik, K 1996Spatial and seasonal distribution of anthropogenic heat emissions in Łódź, Poland.Atmos Environ3033973404Google Scholar
  11. Kłysik K (2002) The characteristics of urban areas in Łódź from a climatological point of view. Fourth Symp. on the urban environment, Norfolk, VA. Amer Meteor SocGoogle Scholar
  12. Kuttler W (1988) Spatial and temporal structures of the urban climate – a survey. In: Grefen K, Löbel J (eds) Environmental meteorology. Dordrecht: Kluwer, pp 305–333Google Scholar
  13. Martilli, A, Clappier, A, Rotach, MW 2002An urban surface exchange parameterisation for mesoscale models.Bound-Layer Meteor104261304CrossRefGoogle Scholar
  14. Moriwaki, R, Kanda, M 2004Seasonal and diurnal fluxes of radiation, heat, water vapor and CO2 over a suburban area.J Appl Meteor4317001710CrossRefGoogle Scholar
  15. Nemitz, E, Hargreaves, KJ, McDonald, AG, Dorsey, JR, Fowler, D 2002Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale.Environ Sci Tech3631393146Google Scholar
  16. Offerle, B, Grimmond, CSB, Oke, TR 2003Parameterization of net all-wave radiation for urban areas.J Appl Meteor4211571173CrossRefGoogle Scholar
  17. Oke TR (1987) Boundary layer climates. London: Routledge, 435 ppGoogle Scholar
  18. Oke, TR 1988The urban energy balance.Progress Phys Geogr12471508Google Scholar
  19. Panofsky, HA, Dutton, JA 1984Atmospheric turbulence: models and methods for engineering applications.J. Wiley and SonsNew York397Google Scholar
  20. Raupach, MR 1994Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index.Bound-Layer Meteor71211216CrossRefGoogle Scholar
  21. Rotach, MW, Fisher, B, Piringer, M 2002COST 715 workshop on urban boundary layer parameterizations.Bull Amer Meteor Soc8315011504Google Scholar
  22. Rotach MW (2002) Overview on the Basel urban boundary layer experiment – BUBBLE. Preprints. Fourth Symp. on the urban environment, 20–24 May 2002, Norfolk, Virginia, Amer Meteor Soc, pp 25–26Google Scholar
  23. Roth, M 2000Review of atmospheric turbulence over cities.Quart J Roy Meteor Soc126941990CrossRefGoogle Scholar
  24. Schmid, HP 1994Source areas for scalars and scalar fluxes.Bound-Layer Meteor67293318CrossRefGoogle Scholar
  25. Schmid, HP, Grimmond, CSB, Cropley, F, Offerle, B, Su, H-B 2000Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States.Agric Forest Meteorol103357374CrossRefGoogle Scholar
  26. Schotanus, P, Nieuwstadt, FTM, DeBruin, HAR 1983Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations.Bound-Layer Meteor268193CrossRefGoogle Scholar
  27. Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of krypton hygrometers in surface flux measurements. Management of irrigation & drainage systems, ASCE, July 21–23, Park City, Utah, pp 945–952Google Scholar
  28. Theurer, W 1999Typical building arrangements for urban air pollution modelling.Atmos Environ3340574066CrossRefGoogle Scholar
  29. van Dijk, A, Kohsiek, W, de Bruin, HAR 2003Oxygen sensitivity of krypton and Lyman-α hygrometers.J Atmos Oceanic Technol20143151CrossRefGoogle Scholar
  30. Webb, EK, Pearman, GI, Leuning, R 1980Correction of flux measurements for density effects due to heat and water vapour transfer.Quart J Roy Meteor Soc10685100CrossRefGoogle Scholar
  31. Willmott, CJ 1982Some comments on the evaluation of model performance.Bull Amer Meteor Soc6313091313Google Scholar
  32. Wilson, K, Goldstein, A, Falge, E, Aubinet, M, Baldocchi, D, Berbigier, P, Bernhofer, C, Ceulemans, R, Dolman, H, Field, C, Grelle, A, Ibrom, A, Law, BE, Kowalski, A, Meyers, T, Moncrieff, J, Monson, R, Oechel, W, Tenhunen, J, Valentini, R, Verma, S 2002Energy balance closure at FLUXNET sites.Agric Forest Meteorol113223243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • B. Offerle
    • 1
    • 2
  • C. S. B. Grimmond
    • 1
  • K. Fortuniak
    • 3
  • K. Kłysik
    • 3
  • T. R. Oke
    • 4
  1. 1.Department of GeographyAtmospheric Sciences Program, Indiana UniversityUSA
  2. 2.Göteborg UniversityGöteborgSweden
  3. 3.University of ŁódźŁódźPoland
  4. 4.University of British ColumbiaVancouverCanada

Personalised recommendations