Skip to main content

Advertisement

Log in

Variability of meteorological droughts in the polish and the Ukrainian Carpathians, 1984–2015

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The article addresses the occurrence and severity of meteorological droughts in terms of deficit of monthly precipitation and the Standardized Precipitation Index (SPI) in the Polish and the Ukrainian Carpathians in the period from 1984 to 2015. The biggest number of cases with the lowest monthly precipitation in a year are found in April both in the Polish and the Ukrainian Carpathians both—9% and 6%, respectively. Insufficient monthly precipitation sums were most frequently characteristic of June and September, with the frequency slightly above 16%. In the other months, the frequency of dry periods with different ranges of SPI exceeded 12%. The months with meteorological drought observed in the whole or a major part of the study area at the same time are accounted for by the prevalence of anticyclonic situations, especially the western sector anticyclone and the anticyclonic wedge. Meteorological droughts covering a major part of the area are the most intense and lasting in the first (1986–1987) and last (2013–2015) decades of the entire period, except for the highest Ukrainian station of Pogegevskaya. The longest meteorological droughts with SPI-12 ≤ − 2.0 are characteristic of transboundary region between the Eastern and the Western Carpathians, the Eastern Beskids in the first decade and the last decade of the 1984–2015 period. The north-western and northern foothills of the Polish Carpathians, the leeward south-eastern macroslope of the Ukrainian Carpathians, and closed intermountain valleys are most prone to meteorological droughts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Precipitation data series from 14 measuring stations located in the Polish Carpathians are obtained from the Institute of Meteorology and Water Management—National Research Institute (data downloaded from the public website: https://danepubliczne.imgw.pl/) while monthly precipitation sums from nine measuring stations in the Ukrainian Carpathians are obtained from the Central Geophysical Observatory of the State Emergency Service of Ukraine and are available from the corresponding author on reasonable request.

References

  • Bradford RB (2000) Drought events in Europe. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer, Dordrecht, pp 7–20

    Chapter  Google Scholar 

  • Brazdil R, Trnka M, Mikšovský J, Řezníčková L, Dobrovolný P (2015) Spring–summer droughts in the Czech Land in 1805–2012 and their forcings. Int J Climatol 35:1405–1421. https://doi.org/10.1002/joc.4065

    Article  Google Scholar 

  • Cebulska M (2018) Periods without precipitation and with low precipitation in the Polish Carpathians in the period from 1984 to 2015. Pol J Agron. https://doi.org/10.26114/pja.iung.355.2018.34.06

    Article  Google Scholar 

  • Cebulska M, Twardosz R (2010) Temporal variability of the lowest monthly precipitation in the Upper Vistula River. Przegląd Geofizyczny LV 3–4:175–188 (in Polish)

    Google Scholar 

  • Cherenkova EA, Semenova IG, Kononova NK, Titkova TB (2015) Droughts and dynamics of synoptic processes in the south of the East European Plain at the beginning of the twenty-first century. Arid Ecosyst. https://doi.org/10.1134/S2079096115020055

    Article  Google Scholar 

  • Coll J, Curley M, Domonkos P, Aguilar E, Walsh S, Sweeney J (2015) An application of HOMER and ACMANT for homogenising monthly precipitation records in Ireland. Conf Paper Theor Appl Climatol. https://doi.org/10.1007/s00704-014-1298-5

    Article  Google Scholar 

  • Cook ER, Seager R, Kushnir Y et al (2015) Old World megadroughts and pluvials during the Common Era. Sci Adv. https://doi.org/10.1126/sciadv.1500561

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wires Clim Change 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • De Bono A, Peduzzi P, Kluser S, Giuliani G (2004) Impacts of summer 2003 heat wave in Europe. Environ Alert Bull UNEP. https://doi.org/10.1017/S0147547903000218

    Article  Google Scholar 

  • Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59(8):209–216. https://doi.org/10.1256/wea.73.04

    Article  Google Scholar 

  • Hanel M, Rakovec O, Markonis Y, Máca P, Samaniego L, Kyselý M, Kumar R (2018) Revisiting the recent European droughts from a long-term perspective. Sci Rep. https://doi.org/10.1038/s41598-018-27464-4https://www.ecad.eu//indicesextremes/index.php

  • Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln Declaration on drought indices: universal meteorological drought index recommended. B Am Meteorol Soc 92(4):485–488. https://doi.org/10.1175/2010BAMS3103.1

    Article  Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Climate 25(6):2146–2161. https://doi.org/10.1175/JCLI-D-11-00296.12146-2161

    Article  Google Scholar 

  • Ionita M, Tallaksen LM, Kingston DG, Stagge JH, Laaha G, Van Lanen HAJ, Scholz P, Chelcea SM, Haslinger K (2017) The European 2015 drought from a climatological perspective. Hydrol Earth Syst Sc 21:1397–1419. https://doi.org/10.5194/hess-21-1397-2017

    Article  Google Scholar 

  • Kanecka-Geszke E, Smarzyńska K (2007) Assessing meteorological drought in some agro-climatic regions of Poland by using different indices. Acta Scientiarium Polonorum Formatio Circumiectus 6(2):41–50

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Kholiavchuk D, Cebulska M (2019) The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013. Theor Appl Clim 138(3):1615–1628. https://doi.org/10.1007/s00704-019-02910-z

    Article  Google Scholar 

  • Kovalchuk I, Kravchuk Y, Mykhnovych A, Pylypovych O (2012) Recent landform evolution in the Ukrainian Carpathians. In: Lóczy D, Stankoviansky M, Kotarba A (eds) Recent landform evolution: the Carpatho–Balkan–Dinaric region. Springer geography. Springer, Dordrecht, pp 177–204. https://doi.org/10.1007/978-94-007-2448-8_2

    Chapter  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1267–1326

    Google Scholar 

  • Kożuchowski K (1990) Materials to learn about the history of climate in the instrumental observation time. Wydawnictwo Uniwersytetu Łódzkiego, Łódź: 301 (in Polish)

  • Kundzewicz ZW (2011) Climate changes, their reasons and effects—observations and projections. Landf Anal 15:39–49

    Google Scholar 

  • Kundzewicz ZW, Kozyra J (2011) Reducing impacts of climatic threats to agriculture and rural areas. Pol J Agron 7:68–81

    Google Scholar 

  • Łabędzki L (2007) Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrig Drain 56(1):67–77. https://doi.org/10.1002/ird.285

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22(13):1571–1592. https://doi.org/10.1002/joc.846

    Article  Google Scholar 

  • Marin L, Birsan MV, Bojariu R, Dumitrescu A, Micu DM, Manea A (2014) An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity, and wind speed during the 1961–2013 period. J Earth Environ Sci 9(4):253–258

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proc. 8th Conf. Applied Climatology, California: 179–184

  • McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. Preprints 9th Conf. Applied Climatology, Dallas 15–20/01/1995. https://doi.org/10.1007/s13398-014-0173-7.2

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1):202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Młyński D, Cebulska M, Wałęga A (2018) Trends, variability, and seasonality of maximum annual daily precipitation in the Upper Vistula Basin, Poland. Atmosphere 9:313. https://doi.org/10.3390/atmos9080313

    Article  Google Scholar 

  • Niedźwiedź T (1981) Synoptic situations and its influence on spatial differentiation of selected climatic elements in upper Vistula basin 58: 165 Rozprawy Habilitacyjne UJ, Kraków (in Polish with English summary)

  • Niedźwiedź T (2018) Catalogue of synoptic situations and circulation indices in the upper Vistula river basin (1873–2007). Computer file available at Department of Climatology, University of Silesia, ul. Będzińska 60: 41–200 Sosnowiec, Poland: tadeusz.niedzwiedz@us.edu.pl, http://klimat.wnoz.us.edu.pl/ (in Polish)

  • Parry S, Hannaford J, Lloyd-Hughes B, Prudhomme C (2012) Multi-year droughts in Europe: analysis of development and causes. Hydrol Res 43:689–706. https://doi.org/10.2166/nh.2012.024

    Article  Google Scholar 

  • Pfeifroth U, Kothe S, Müller R, Trentmann J, Hollmann R, Fuchs P, Werscheck M (2017) Surface radiation data set—Heliosat (SARAH)—edition 2, satellite application facility on climate monitoring. https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002

  • Pohlert T (2018) Non-parametric trend tests and change-point detection. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf. Accessed 16 Nov 2019

  • Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann for Sci 63:569–577. https://doi.org/10.1051/forest:2006043

    Article  Google Scholar 

  • Rimkus E, Kažys J, Valiukas D, Stankūnavičius G (2014) The atmospheric circulation patterns during dry periods in Lithuania. Oceanologia 56(2):223–239. https://doi.org/10.5697/OC.56-2.223

    Article  Google Scholar 

  • Rojecki A (1965) (red) A selection from historial sources of unusual hydrological and meteorological phenomena on Polish territories in the X th to XVI th century. Państwowy Instytut Hydrologiczno Meteorologiczny, Warszawa. (in Polish)

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Skrynyk O, Savchenko V, Radchenko R, Skrynyk O. (2014) Homogenization of monthly air temperature and monthly precipitation sum data sets collected in Ukraine. In Eighth Seminar for Homogenization and Quality Control in Climatological Databases and Third Conference on Spatial Interpolation Techniques in Climatology and Meteorology. WCDMP 84: 128–133

  • Spinoni J, Antofie T, Barbosa P, Bihari Z, Lakatos M, Szalai S, Szentimrey T, Vogt J (2013) An overview of drought events in the Carpathian Region in 1961–2010. Adv Sci Res 10(1):21–32. https://doi.org/10.5194/asr-10-21-2013

    Article  Google Scholar 

  • Spinoni J, Naumann G, Vogt JV, Barbosa P (2015) The biggest drought events in Europe from 1950 to 2012. J Hydrol Reg Stud Elsevier 3:509–524. https://doi.org/10.1016/J.EJRH.2015.01.001

    Article  Google Scholar 

  • Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736. https://doi.org/10.1002/joc.5291

    Article  Google Scholar 

  • Trenberth K, Overpeck J, Solomon S (2004) Exploring drought and its implications for the future. Eos Trans AGU 85(3):27. https://doi.org/10.1029/2004EO030004

    Article  Google Scholar 

  • Twardosz R (2010) An analysis of diurnal variations of heavy hourly precipitation in Krakow using a classification of circulation types over southern Poland. Phys Chem Earth 35:456–461. https://doi.org/10.1016/j.pce.2009.11.003

    Article  Google Scholar 

  • Twardosz R, Cebulska M (2020) Temporal variability of the highest and the lowest monthly precipitation totals in the Polish Carpathian Mountains (1881–2018). Theor Appl Climatol 140:327–341. https://doi.org/10.1007/s00704-019-03079-1

    Article  Google Scholar 

  • Twardosz R, Kossowska-Cezak U (2019) Thermal anomalies in the Mediterranean and in Asia Minor (1951–2010). IJGW 18(4):304–322. https://doi.org/10.1504/IJGW.2019.101089

    Article  Google Scholar 

  • Twardosz R, Kossowska-Cezak U (2021) Large-area thermal anomalies in Europe (1951–2018). Tempor Spat Patterns Atmos Res 251:105434. https://doi.org/10.1016/j.atmosres.2020.105434

    Article  Google Scholar 

  • Twardosz R, Cebulska M, Walanus A (2016) Anomalously heavy monthly and seasonal precipitation in the Polish Carpathian Mountains and their foreland during the years 1881–2010. Theoret Appl Climatol 126:323–337. https://doi.org/10.1007/s00704-015-1570-3

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration Index—SPEI. J Clim 23:1696. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vicente-Serrano SM, Lopez-Moreno JI, Beguería S et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett. https://doi.org/10.1088/1748-9326/9/4/044001

    Article  Google Scholar 

  • Vido J, Tadesse T, Šustek Z, Kandrík R, Hanzelová M, Škvarenina J, Škvareninová J, Hayes M (2015) Drought occurrence in Central European mountainous region (Tatra National Park, Slovakia) within the period 1961–2010. Adv Meteorol. https://doi.org/10.1155/2015/248728

    Article  Google Scholar 

  • von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Walanus A, Cebulska M, Twardosz R (2021) Long-term variability pattern of monthly and annual atmospheric precipitation in the polish Carpathian mountains and their foreland (1881–2018). Pure Appl Geophys 178:633–650. https://doi.org/10.1007/s00024-021-02663-9

    Article  Google Scholar 

  • Warszyńską J (1995) Preface. In J Warszyńską (Ed), The Polish Carpathians – nature, man and his activities. essay, Jagiellonian University in Kraków (in Polish)

  • World Meteorological Organization (WMO), Global Water Partnership (GWP) (2016) Handbook of drought indicators and indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva. https://doi.org/10.1007/s00704-016-1984-6

  • Zelenáková M, Vido J, Portela MM, Purcz P, Peter Blištán P, Hlavatá H, Hluštík P (2017) Precipitation trends over Slovakia in the period 1981–2013. Water 9:922. https://doi.org/10.3390/w9120922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariia Kholiavchuk.

Additional information

Responsible Editor: Clemens Simmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cebulska, M., Kholiavchuk, D. Variability of meteorological droughts in the polish and the Ukrainian Carpathians, 1984–2015. Meteorol Atmos Phys 134, 17 (2022). https://doi.org/10.1007/s00703-021-00853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-021-00853-7

Navigation