Advertisement

Impact of atmospheric conditions in surface–air exchange of energy in a topographically complex terrain over Umiam

  • Nilamoni BarmanEmail author
  • Arup Borgohain
  • S. S. Kundu
  • Biswajit Saha
  • Rakesh Roy
  • Raman Solanki
  • N. V. P. Kiran Kumar
  • P. L. N Raju
Original Paper

Abstract

The effectiveness of the flux estimation techniques has been investigated over Umiam (25°40′32′′N, 91°54′06′′E, and altitude 1040 m above mean sea level), Shillong, in the Khasi hills located in north-east India. Primary dataset consists of sonic anemometer data recorded during January–February 2014 at 18 m and 30 m levels. Often, general planar fit (GPF) technique is used for long-term flux measurements using eddy covariance (EC). The three flux computation methods, namely double rotation (DR), GPF, and sector-wise planar fit (SPF) techniques have been compared in this investigation. SPF showed a reduction in the vertical wind (w) offset (b0, combination of instrument error and planar fit error) value compared to GPF. SPF minimized the planar-fit error in b0, while the instrument error was constant. The reduction of planar fit error has been seen in the computed sensible heat flux and momentum flux. Variations of 12–13% and 16–18% have been observed in the sensible heat flux and momentum flux in SPF compared to GPF. The effectiveness of SPF has been significant in the w-component estimation. An angle of attack (AA) which acts as a pivotal variable in the estimation of surface flux concentration varied between ± 6° in all atmospheric conditions. The standard deviations of horizontal and vertical velocity normalized by friction velocity (σu/u∗ and σw/u∗) as functions of atmospheric stability parameter (z/L) and obeyed a power-law relation during stable and unstable conditions. The variation in coefficients was in agreement with those estimated over flat and mountainous sites in the literature.

Notes

Acknowledgements

This investigation has been carried out as part of the IGBP-NOBLE project. We thank the Director, Director SPL, and Project Director, ISRO-IGBP for their valuable support.

Supplementary material

703_2019_668_MOESM1_ESM.docx (300 kb)
Supplementary material 1 (DOCX 300 kb)

References

  1. Avissar R, Chen F (1993) Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (sub-grid scale) fluxes for large-scale atmospheric models. J Atmos Sci.  https://doi.org/10.1175/1520-0469(1993)050%3C3751:DAAOPE%3E2.0.CO;2 Google Scholar
  2. Baldocchi DD, Harley P (1995) Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: model testing and application. Plant Cell Environ 18(10):1146–115.  https://doi.org/10.1111/j.1365-3040.1995.tb00625.x CrossRefGoogle Scholar
  3. Berger BW, Davis KJ, Yi C, Bakwin PS, Zhao C (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: Part I. Flux measurement methodology. J Atmos Oceanic Technol 18:529–542CrossRefGoogle Scholar
  4. Bianco L, Djalalova IV, King CW, Wilczak JM (2011) Diurnal evolution and annual variability of boundary layer height and its correlation with other meteorological variables in California’s Central Valley. Bound-Layer Meteorol 140:491–511.  https://doi.org/10.1007/s10546-011-9622-4 CrossRefGoogle Scholar
  5. Black TA, den Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol.  https://doi.org/10.1111/j.1365-2486.1996.tb00074.x
  6. CSAT3 (2014) Instruction manual: CSAT3 three dimensional sonic anemometer. Campbell Scientific. IncGoogle Scholar
  7. Finnigan JJ (1999) A comment on the paper by Lee (1998): on micrometeorological observations of surface-air exchange over tall vegetation. Agri For Meteorol 97:55–64CrossRefGoogle Scholar
  8. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques. Part I.Averaging and coordinate rotation. Bound-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  9. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agri For Meteorol 78(1–2):83–105CrossRefGoogle Scholar
  10. Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler- Sodar measurements. Z Meteorol 41:311–315Google Scholar
  11. Foken T, Gockede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology. A guide for surface flux measurements. Dordrecht, Kluwer, pp 181–208Google Scholar
  12. Fuentes JD, Gillespie TJ, den Hartog G, Neumann HH (1992) Ozone deposition onto a deciduous forest during dry and wet conditions. Agri For Meteorol 62:1–18.  https://doi.org/10.1016/0168-1923(92)90002-L CrossRefGoogle Scholar
  13. Gash JHC, Dolman AJ (2003) Sonic anemometer (co)sine response, and flux measurement. I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agri For Meteorol 119:195–207CrossRefGoogle Scholar
  14. Geissbuhler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Bound-Layer Meteorol 96:371–392CrossRefGoogle Scholar
  15. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578.  https://doi.org/10.1126/science.271.5255.1576 CrossRefGoogle Scholar
  16. Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre C, Moncrieff J, Masheder J, Malhi Y, Wright I, Gash J (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992–1993. Science 270:778–780.  https://doi.org/10.1126/science.270.5237.778 CrossRefGoogle Scholar
  17. Guenther A, Baugh W, Davis K, Hampton G, Harley P, Klinger L, Vierling L, Zimmerman P, Allwine E, Dilts S, Lamb B, Westbeg H, Baldocchi D, Geron C, Pierce T (1996) Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient and mixed layer mass balance techniques. J Geophys Res 101(D13):18555–18567.  https://doi.org/10.1029/96JD00697 CrossRefGoogle Scholar
  18. Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75(1):134–150.  https://doi.org/10.2307/1939390 CrossRefGoogle Scholar
  19. Kral ST, Sjöblom A, Nygård T (2014) Observations of summer turbulent surface fluxes in a High Arctic fjord. Q J R Meteorol Soc 140:666–675.  https://doi.org/10.1002/qj.2167 CrossRefGoogle Scholar
  20. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agri For Meteorol 91:39–49CrossRefGoogle Scholar
  21. Lee X, Massman W, Law BE (2004) Handbook of micrometeorology. A guide for flux measurement and analysis. Kluwer Academic Press, DordrechtGoogle Scholar
  22. Li M, Babel W, Tanaka K, Foken T (2013) Note on the application of planar-fit rotation for non-Omni-directional sonic anemometers. Atmos Meas Tech 6:221–229.  https://doi.org/10.5194/amt-6-221-2013
  23. Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B (2014) Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau. China J Geophys Res Atmos 119:6009–6021.  https://doi.org/10.1002/2014JD021510 CrossRefGoogle Scholar
  24. Lindberg SE, Hanson PJ, Meyers TP, Kim KH (1998) Air/surface exchange of mercury vapor over forests, the need for a reassessment of continental biogenic emissions. Atmos Environ Elsevier 32(5):895–908.  https://doi.org/10.1016/S1352-2310(97)00173-8 CrossRefGoogle Scholar
  25. Mahrt L, Sun J (1995) Dependence of surface exchange coefficients on the averaging scale and grid size. Quart J R Meteorol Soc 121Google Scholar
  26. Mammarella I, Kolari P, Rinne J, Keromen P, Pumpanen J, Vesala T (2007) Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä Forest. Finland Tellus 59B:900–909.  https://doi.org/10.1111/j.1600-0889.2007.00306.x CrossRefGoogle Scholar
  27. McBean GA (1974) The turbulent transfer mechanisms: a time domain analysis. Q J Roy Meteorol Soc 100:53–66CrossRefGoogle Scholar
  28. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Bound-Layer Meteorol 43(3):231–245.  https://doi.org/10.1007/BF00128405 CrossRefGoogle Scholar
  29. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere Tr. Akad Nauk SSSR Geophiz Inst 24:163–187Google Scholar
  30. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112CrossRefGoogle Scholar
  31. Motha RP, Verma SB, Rosenberg NJ (1980) Turbulence spectra above a vegetated surface under conditions of sensible heat advection. J Appl Meteorol 18:317–323CrossRefGoogle Scholar
  32. Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2016) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Bound-Layer Meteorol 159:539–565.  https://doi.org/10.1007/s10546-015-0066-0 CrossRefGoogle Scholar
  33. Ono K, Mano M, Miyata A, Inoue Y (2008) Applicability of the planar-fit technique in estimating surface-fluxes over flat terrain using eddy covariance. J Agri Meteorol 64:121–130.  https://doi.org/10.2480/agrmet.64.3.5 CrossRefGoogle Scholar
  34. Paw UKT, Baldocchi DD, Meyers TP, Wilson K (2000) Correction of Eddy-covariance measurements incorporating both advective effects and density fluxes. Bound-layer Meteorol 97:487–511CrossRefGoogle Scholar
  35. Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. Eddy covariance: a practical guide to measurement and data analysis. Springer Atmos Sci 59–83. ISBN 978-94-007-2351-1Google Scholar
  36. Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948.  https://doi.org/10.1002/qj.71 CrossRefGoogle Scholar
  37. Shimizu T (2015) Effect of coordinate rotation systems on calculated fluxes over a forest in complex terrain: a comprehensive comparison. Bound-Layer Meteorol.  https://doi.org/10.1007/s10546-015-0027-7
  38. Siebicke L, Hunner M, Foken T (2012) Aspects of CO2 advection measurements. Theor Appl Climatol 109:109–131.  https://doi.org/10.1007/s00704-011-0552-3 CrossRefGoogle Scholar
  39. Solanki R, Singh N, Kiran Kumar NVP, Rajeev K, Dhaka SK (2016) Time variability of surface-layer characteristics over a mountain ridge in the central himalayas during the spring season. Springer Bound-Layer Meteorol 158:453–471.  https://doi.org/10.1007/s10546-015-0098-5 CrossRefGoogle Scholar
  40. Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Bound-Layer Meteorol 159:97–121.  https://doi.org/10.1007/s10546-015-0103-z CrossRefGoogle Scholar
  41. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  42. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects. Agric For Meteorol 119:1–21.  https://doi.org/10.1016/S0168-1923(03)00136-9 CrossRefGoogle Scholar
  43. van der Molen MK, Gash JHC, Elbers JA (2004) Sonic anemometer (co)sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration. Agri For Meteorol 122:95–109CrossRefGoogle Scholar
  44. Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ (1986) Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Bound-Layer Meteorol 36(1–2):71–91.  https://doi.org/10.1007/BF00117459 CrossRefGoogle Scholar
  45. Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Bound-Layer Meteorol 11:431–447CrossRefGoogle Scholar
  46. Wilczak JM, Oncley SP, Stage S (2001) Sonic anemometer tilts correction algorithms. Bound-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  47. Yuan R, Kang M, Park S, Hong J, Lee D, Kim J (2007) The effect of coordinate rotation on the eddy covariance flux estimation in a hilly ko-flux forest catchment. Korean J Agri For Meteorol 9(2):100–108CrossRefGoogle Scholar
  48. Yuan R, Kang M, Park S (2011) Expansion of the planar-fit method to estimate flux over complex Terrain. Meteorol Atmos Phys 110:123–133.  https://doi.org/10.1007/s00703-010-0113-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Space and Atmospheric Science DivisionNortheastern Space Applications CentreMeghalayaIndia
  2. 2.Department of PhysicsNational Institute of TechnologyAgartalaIndia
  3. 3.Maharaja Bir Bikram UniversityAgartalaIndia
  4. 4.National Astronomical Research Institute of Thailand (NARIT)Chiang MaiThailand
  5. 5.Space Physics LaboratoryVikram Sarabhai Space CentreTrivandrumIndia

Personalised recommendations