Advertisement

Meteorology and Atmospheric Physics

, Volume 131, Issue 6, pp 1661–1675 | Cite as

Study of the meteorological influence on ozone in urban areas and their use in assessing ozone trends in all seasons from 2009 to 2015 in Tianjin, China

  • Jianbo YangEmail author
  • Jingle Liu
  • Suqin Han
  • Qing Yao
  • Ziying Cai
Original Paper
  • 111 Downloads

Abstract

Ozone pollution in urban areas has increasingly become a topic of intense research in China. Assessing the impact of emission control strategies on O3 levels is complicated by the disturbance of meteorological factors. This study employs a statistical methodology named generalized additive model (GAM) to characterize the relationship between meteorological factors and ozone levels as well as to meteorologically adjust the ozone trends in Tianjin from 2009 to 2015. The results indicate that the afternoon temperature and the morning solar radiation are the leading meteorological factors controlling O3 in Tianjin. GAM proves to be an effective tool in predicting ozone levels, because it could capture 40–77% of the variance in the daily ozone maxima for different seasons. Only 3–5 parameters are incorporated into the final model for each season. During summer months, the most important explanatory variables are those influencing the photochemical production. Whereas in winter, ozone destruction by titration with NO is the dominant mechanism affecting the O3 levels. After adjustment for meteorological effect, general upward trends are evident in ozone levels, which is − 0.34, 0.97, 0.70 and 0.12 ppb year−1 in spring, summer, autumn and winter, respectively, indicating that the emission reduction strategies in Tianjin from 2009 to 2015 appear to be more beneficial in reducing the effect of O3 loss using titration rather than mitigating the photochemical pollution. The clear rising tendency of yearly medians of the meteorologically adjusted ozone (0.24 ppb year−1) strongly suggests formulating a specialized mitigation strategy for regional O3 pollution.

Notes

Acknowledgements

This work was funded by National Key R&D Program of China (2016YFC0203302), National Science and Technology Program of China (41771242), the Public Welfare Projects for Environmental Protection (201409001), and the Scientific research project of Tianjin Meteorological Bureau (201761bsjj06).

References

  1. Atkinson-Palombo CM, Miller JA, Balling RC (2006) Quantifying the ozone “weekend effect” at various locations in Phoenix, Arizona. Atmos Environ 40:7644–7658.  https://doi.org/10.1016/j.atmosenv.2006.05.023 CrossRefGoogle Scholar
  2. Bhatia A, Tomer R, Kumar V et al (2012) Impact of tropospheric ozone on crop growth and productivity—a review. J Sci Ind Res 71:97–112Google Scholar
  3. Bian H, Han SQ, Tie XX et al (2007) Evidence of impact of aerosols on surface ozone concentration in Tianjin, China. Atmos Environ 41:4672–4681.  https://doi.org/10.1016/j.atmosenv.2007.03.041 CrossRefGoogle Scholar
  4. Cai C, Kulkarni S, Zhao Z et al (2016) Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmos Environ 128:28–44.  https://doi.org/10.1016/j.atmosenv.2015.12.031 CrossRefGoogle Scholar
  5. Camalier L, Cox W, Dolwick P (2007) The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos Environ 41:7127–7137.  https://doi.org/10.1016/j.atmosenv.2007.04.061 CrossRefGoogle Scholar
  6. Chen K, Zhou L, Chen X et al (2017) Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: no clear evidence for threshold. Environ Res 155:235–241.  https://doi.org/10.1016/j.envres.2017.02.009 CrossRefGoogle Scholar
  7. Cheng FY, Jian SP, Yang ZM et al (2015) Influence of regional climate change on meteorological characteristics and their subsequent on ozone dispersion in Taiwan. Atmos Environ 103:66–81.  https://doi.org/10.1016/j.atmosenv.2014.12.020 CrossRefGoogle Scholar
  8. Chou CCK, Tsai CY, Shiu CJ et al (2009) Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): implications for the ozone production efficiency of NOx. J Geophys Res Atmos 114:D00G01.  https://doi.org/10.1029/2008jd010446 CrossRefGoogle Scholar
  9. Curci G, Beekmann M, Vautard R (2009) Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos Environ 43:1444–1455.  https://doi.org/10.1016/j.atmosenv.2008.02.070 CrossRefGoogle Scholar
  10. Dawson JP, Adams PJ, Pandis SN (2007) Sensitivity of ozone to summertime climate in the Eastern USA: a modeling case study. Atmos Environ 41:1494–1511.  https://doi.org/10.1029/2007JD009098 CrossRefGoogle Scholar
  11. Ding AJ, Wang T, Zhao M et al (2004) Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multiday ozone episode in the Pearl River Delta of China. Atmos Environ 38:6737–6750.  https://doi.org/10.1016/j.atmosenv.2004.09.017 CrossRefGoogle Scholar
  12. EPA (2005) Evaluating ozone control programs in the eastern United States. EPA454-K-05-001, Washington, DCGoogle Scholar
  13. Feng Z, Hu E, Wang X et al (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut 199:42–48.  https://doi.org/10.1016/j.envpol.2015.01.016 CrossRefGoogle Scholar
  14. Gong X, Kaulfus A, Nair U et al (2017) Quantifying O3 impacts in urban areas due to wildfires using a generalized additive model. Environ Sci Technol 51:13216–13223.  https://doi.org/10.1021/acs.est.7b03130 CrossRefGoogle Scholar
  15. Gong X, Hong S, Jaffe DA (2018) Ozone in China: spatial distribution and leading meteorological factors controlling O3 in 16 Chinese cities. Aerosol Air Qual Res 18(9):2287–2300CrossRefGoogle Scholar
  16. Goodman JE, Prueitt RL, Sax SN et al (2015) Ozone exposure and systemic biomarkers: evaluation of evidence for adverse cardiovascular health impacts. Crit Rev Toxicol 45:412–452.  https://doi.org/10.3109/10408444.2015.1031371 CrossRefGoogle Scholar
  17. Han SQ, Bian H, Feng YC et al (2011) Analysis of relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual Res 11:128–139.  https://doi.org/10.4209/aaqr.2010.07.0055 CrossRefGoogle Scholar
  18. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63.  https://doi.org/10.1016/j.atmosenv.2008.09.051 CrossRefGoogle Scholar
  19. Jaffe DA, Zhang L (2017) Meteorological anomalies lead to elevated O3 in the western U.S. in June 2015. Geophys Res Lett 44:1990–1997.  https://doi.org/10.1002/2016GL072010 CrossRefGoogle Scholar
  20. Li L, Chen CH, Fu JS et al (2011) Air quality and emissions in the Yangtze River Delta, China. Atmos Chem Phys 11:1621–1639.  https://doi.org/10.5194/acp-11-1621-2011 CrossRefGoogle Scholar
  21. Lou S, Liao H, Yang Y et al (2015) Simulation of the interannual variations of tropospheric ozone over China: roles of variations in meteorological parameters and anthropogenic emissions. Atmos Environ 122:839–851.  https://doi.org/10.1016/j.atmosenv.2015.08.081 CrossRefGoogle Scholar
  22. Lu Q, Zheng J, Shen S et al (2013) Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmos Environ 76:11–20.  https://doi.org/10.1016/j.atmosenv.2012.10.062 CrossRefGoogle Scholar
  23. Mao HT, Talbot R (2004) Role of meteorological processes in two New England ozone episodes during summer 2001. J Geophys Res.  https://doi.org/10.1029/2004jd004850 CrossRefGoogle Scholar
  24. Ordonez C, Mathis H, Furger M et al (2005) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos Chem Phys 5:1187–1203.  https://doi.org/10.5194/acp-5-1187-2005 CrossRefGoogle Scholar
  25. Ou J, Yuan Z, Zheng J et al (2016) Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? Environ Sci Technol 50:5720–5728.  https://doi.org/10.1021/acs.est.6b00345 CrossRefGoogle Scholar
  26. Pearce JL, Beringer J, Nicholls N et al (2011) Quantifying the influence of local meteorology on air quality using Generalized Additive Models. Atmos Environ 45:1328–1336.  https://doi.org/10.1016/j.atmosenv.2010.11.051 CrossRefGoogle Scholar
  27. Qin Y, Tonnesen GS, Wang Z (2004) Weekend/Weekday difference of ozone, NOx, CO, VOCs, PM10 and the light scatter during ozone season in southern California. Atmos Environ 38:2197–2207.  https://doi.org/10.1016/j.atmosenv.2004.01.035 CrossRefGoogle Scholar
  28. R Development Core Team (2017) An introduction to R: A programming environment for data analysis and graphics. R foundation for statistical computing, ViennaGoogle Scholar
  29. Ran L, Zhao C, Xu W et al (2012) Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study. Atmos Chem Phys 12:7531–7542.  https://doi.org/10.5194/acp-12-7531-2012 CrossRefGoogle Scholar
  30. Rao ST, Zurbenko IG, Neagu R et al (1997) Space and time scales in ambient ozone data. B Am Meteorol Soc 78:2153–2166.  https://doi.org/10.1175/1520-0477(1997)078%3c2153:SATSIA%3e2.0.CO;2 CrossRefGoogle Scholar
  31. Sakamoto M, Yoshimura A, Kosaka H et al (2005) Study on weekend-weekday differences in ambient oxidant concentrations in Hyogo prefecture. J Jpn Soc Atmos Environ 40:201–208Google Scholar
  32. Shan W, Yin Y, Lu H et al (2009) A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmos Res 93:767–776.  https://doi.org/10.1016/j.atmosres.2009.03.007 CrossRefGoogle Scholar
  33. Solberg S, Hov O, Sovde A et al (2008) European surface ozone in the extreme summer 2003. J Geophys Res 113:D07307.  https://doi.org/10.1029/2007JD009098 CrossRefGoogle Scholar
  34. Tang G, Wang Y, Li X et al (2012) Spatial-temporal variations in surface ozone in Northern China as observed during 2009-2010 and possible implications for future air quality control strategies. Atmos Chem Phys 12:2757–2776.  https://doi.org/10.5194/acp-12-2757-2012 CrossRefGoogle Scholar
  35. Thompson ML, Reynolds J, Cox LH et al (2001) A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos Environ 35:617–630.  https://doi.org/10.1016/S1352-2310(00)00261-2 CrossRefGoogle Scholar
  36. Tu J, Xia ZG, Wang H et al (2007) Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos Res 85:310–337.  https://doi.org/10.1016/j.atmosres.2007.02.003 CrossRefGoogle Scholar
  37. Vestreng V, Adams M, Goodwin J (2004) Inventory review 2004, Emission data reported to CLRTAP and under the NEC directive, EMEP/EEA Joint Review Report, EMEP/MSC-W Note 1/2004, ISSN 0804-2446Google Scholar
  38. Vogel B, Riemer N, Vogel H et al (1999) Findings on NOy as an indicator for ozone sensitivity based on different numerical simulations. J Geophys Res 104:3605–3620.  https://doi.org/10.1029/1998JD100075 CrossRefGoogle Scholar
  39. Wang T, Ding AJ, Gao J et al (2006) Strong ozone production in urban plumes from Beijing, China. Geophys Res Lett 33(21):320–337.  https://doi.org/10.1029/2006GL027689 CrossRefGoogle Scholar
  40. Wang T, Nie W, Gao J et al (2010) Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact. Atmos Chem Phys 10:7603–7615.  https://doi.org/10.5194/acp-10-7603-2010 CrossRefGoogle Scholar
  41. Wang T, Xue LK, Brimblecombe P et al (2017) Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ 575:1582–1596.  https://doi.org/10.1016/j.scitotenv.2016.10.081 CrossRefGoogle Scholar
  42. WHO (2000) Guidelines for air quality. World Health Organization, Geneva, pp 6737–6750Google Scholar
  43. Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154.  https://doi.org/10.1023/A:1009662704779 CrossRefGoogle Scholar
  44. Xing J, Wang SX, Jang C et al (2011) Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. Atmos Chem Phys 11:5027–5044.  https://doi.org/10.5194/acp-11-5027-2011 CrossRefGoogle Scholar
  45. Yang JB, Liu HN, Sun JN (2018) Evaluation and application of an online coupled modeling system to assess the interaction between urban vegetation and air quality. Aerosol Air Qual Res 18:693–710.  https://doi.org/10.4209/aaqr.2017.06.0199 CrossRefGoogle Scholar
  46. Yao Q, Sun ML, Cai ZY et al (2011) Seasonal variation and analysis of the relationship between NO, NO2 and O3 concentrations in Tianjin in 2009. Environ Chem 30(9):1650–1656 (in Chinese) Google Scholar
  47. Zhang J, Wang T, Chameides W et al (2007) Ozone production and hydrocarbon reactivity in Hong Kong, Southern China. Atmos Chem Phys 7:557–573CrossRefGoogle Scholar
  48. Zhao B, Wang SX, Liu H et al (2013a) NOx emissions in China: historical trends and future perspectives. Atmos Chem Phys 13:9869–9897.  https://doi.org/10.5194/acp-13-9869-2013 CrossRefGoogle Scholar
  49. Zhao PS, Dong F, He D et al (2013b) Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos Chem Phys 13:4631–4644.  https://doi.org/10.5194/acp-13-4631-2013 CrossRefGoogle Scholar
  50. Zheng JY, Swall JL, Cox WM et al (2007) Interannual variation in meteorologically adjusted ozone levels in the eastern United States: a comparison of two approaches. Atmos Environ 41:705–716.  https://doi.org/10.1016/j.atmosenv.2006.09.01 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Jianbo Yang
    • 1
    Email author
  • Jingle Liu
    • 1
  • Suqin Han
    • 1
  • Qing Yao
    • 2
  • Ziying Cai
    • 2
  1. 1.Tianjin Institute of Meteorological ScienceTianjinChina
  2. 2.Tianjin Environmental Meteorological CenterTianjinChina

Personalised recommendations