Advertisement

Meteorology and Atmospheric Physics

, Volume 129, Issue 5, pp 495–506 | Cite as

Vectorial statistics for the standard deviation of wind direction

  • Pierre S. FarrugiaEmail author
  • Alfred Micallef
Original Paper

Abstract

The standard deviation of wind direction is an important parameter in atmospheric pollution management. It can be used to calculate the rate of horizontal diffusion and from this the transport and dispersion of air contaminants can be determined. The standard deviation of wind direction cannot be calculated directly from customary linear statistics, mainly because of its periodic nature which makes the zero position arbitrary. Various algorithms have been proposed to estimate its value. The methodologies adopted in meteorology implicitly assume that the wind angle can be treated independently of the wind speed. Such an assumption might not be appropriate in some instances, as will be shown in this work by means of an example. To overcome this limitation, a new algorithm that takes into account both the periodic and the vectorial nature of the wind direction will be proposed. This is done by weighing each sample value with the corresponding wind speed. The results obtained from the new method were compared to those determined from algorithms available in literature using measured data. The comparison indicates that while the behavior is similar, differences do exist. Further investigation indicated that while the differences can be small, they might be physically important.

Keywords

Wind Speed Wind Direction Average Wind Speed Horizontal Wind Speed Angular Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Dr M. Toda and the GEWEX (Global Energy and Water Cycle Experiment) Asian Monsoon Experiment (or GAME) for making their experimental data available for use in this work. We would also like to thank those persons whose useful comments have helped improve this work.

Supplementary material

703_2016_483_MOESM1_ESM.pdf (51 kb)
Supplementary material 1: An additional example where the directional and vector statistics differed (PDF 51 kb)

References

  1. Ackermann GR (1983) Means and standard deviation of horizontal wind components. J Appl Meteorol 22:959–961. doi: 10.1175/1520-0450(1983)022<0959:MASDOH>2.0.CO;2 CrossRefGoogle Scholar
  2. Agata Y (ed.) (2002) GAME-T Dataset CD-ROM Version 1 (2002 Spring), GAME CD-ROM No.4, GAME-T data center. http://hydro.iis.u-tokyo.ac.jp/GAME-T/GAIN-T/field/EGAT/flux/1999Feb.html. Accessed 1 August 2015
  3. Anfossi D, Alessandrini S, Trini Castelli S, Ferrero E, Oettl D, Degrazia G (2006) Tracer dispersion simulation in low wind speed conditions with a new 2-D Langevin equation system. Atmos Environ 40:7234–7245. doi: 10.1016/j.atmosenv.2006.05.081 CrossRefGoogle Scholar
  4. Baird DC (1962) Experimentation: an introduction to measurement theory and experiment design. Prentice-Hall Inc., New Jersey, pp 62–63Google Scholar
  5. Batschelet E (1981) Circular statistics in biology. Academic Press Inc., LondonGoogle Scholar
  6. Carta JA, Ramírez P, Bueno C (2008) A joint probability density function of wind speed and direction for wind energy analysis. Energy Convers Manag 49:1309–1320. doi: 10.1016/j.enconman.2008.01.010 CrossRefGoogle Scholar
  7. Castans M, Barquero C (1994) A Framework for the structure of a low wind speed field. Bound Layer Meteorol 69:137–147. doi: 10.1007/BF00713299 CrossRefGoogle Scholar
  8. Cirillo MC, Poli AA (1992) An intercomparison of semiempirical diffusion models under low wind speed, stable conditions. Atmos Environ A Gen 26:765–774. doi: 10.1016/0960-1686(92)90236-E CrossRefGoogle Scholar
  9. Environmental Protection Agency (2000) Meteorological monitoring guidance for regulatory modeling applications (No. EPA-454/R-99-005). Environmental Protection Agency (EPA)Google Scholar
  10. Erdem E, Shi J (2011) Comparison of bivariate distribution construction approaches for analysing wind speed and direction data. Wind Energy 14:27–41. doi: 10.1002/we.400 CrossRefGoogle Scholar
  11. Essa KSM, Mubarak F, Abu Khadra S (2005) Comparison of some sigma schemes for estimation of air pollutant dispersion in moderate and low winds. Atmos Sci Lett 6:90–96. doi: 10.1002/asl.94 CrossRefGoogle Scholar
  12. Essenwanger OM (1986) General climatology: elements of statistical analysis, world survey of climatology series, vol 1B. Elsevier Science Publishers, AmsterdamGoogle Scholar
  13. Farrugia PS, Micallef A (2006) Comparative analysis of estimators for wind direction standard deviation. Meteorol Appl 13:29–41. doi: 10.1017/S1350482705001982 CrossRefGoogle Scholar
  14. Farrugia PS, Borg JL, Micallef A (2009) On the algorithms used to compute the standard deviation of wind direction. J Appl Meteorol Climatol 48:2144–2151. doi: 10.1175/2009JAMC2050.1 CrossRefGoogle Scholar
  15. Finn D, Clawson KL, Eckman RM, Liu H, Russell ES, Gao Z, Brooks S (2016) Project Sagebrush: revisiting the value of the horizontal plume spread parameter σ y. J Appl Meteorol Climatol 55:1305–1322. doi: 10.1175/JAMC-D-15-0283.1 CrossRefGoogle Scholar
  16. Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  17. George KV, Verma P, Devotta S (2007) Locating air quality monitoring station using wind impact area diagram. Environ Monit Assess 145:113–118. doi: 10.1007/s10661-007-0020-9 CrossRefGoogle Scholar
  18. Hanna SR (1983) Lateral turbulence intensity and plume meandering during stable conditions. J Climate Appl Meteorol 22:1424–1430. doi:10.1175%2F1520-0450%281983%29022%3C1424%3ALTIAPM%3E2.0.CO%3B2Google Scholar
  19. Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330. doi: 10.1007/BF00229675 CrossRefGoogle Scholar
  20. Ibarra JI (1995) A new approach for the determination of horizontal wind direction fluctuations. J Appl Meteorol 34:1942–1949. doi:10.1175%2F1520-0450%281995%29034%3C1942%3AANAFTD%3E2.0.CO%3B2Google Scholar
  21. Irwin JS (1983) Estimating plume dispersion—A comparison of several sigma schemes. J Climate Appl Meteorol 22:92–114. doi:10.1175%2F1520-0450%281983%29022%3C0092%3AEPDACO%3E2.0.CO%3B2Google Scholar
  22. Isikwue B, Tsutsu O, Utah E (2010) Estimation of horizontal pollution potential and mean ground level concentrations of air pollutants from an elevated source over Makurdi, Nigeria using wind data. Int J Phys Sci 5:2402–2410Google Scholar
  23. Koh T-Y, Ng JS (2009) Improved diagnostics for NWP verification in the tropics. J Geophys Res Atmos 114:2156–2202. doi: 10.1029/2008JD011179 CrossRefGoogle Scholar
  24. Luhar AK (2012) Lagrangian Particle Modeling of Dispersion in Light Winds. In: Lin J, Brunner D, Gerbig C, Stohl A, Luhar A (ed), Webley P (eds) Lagrangian Modeling of the Atmosphere, American Geophysical Union, Washington, DC, pp 37–52. doi:  10.1029/2012GM001264
  25. Lyons TJ, Scott WD (1990) Principles of air pollution meteorology. Belhaven Press, a division of Printer Publishers, London, pp 40–45Google Scholar
  26. Mardia KV, Jupp PE (2000) Directional statistics. John Wiley & Sons Ltd, West SussexGoogle Scholar
  27. McWilliams B, Sprevak D (1980) The estimation of the parameters of the distribution of wind speed and direction. Wind Eng 4:227–238Google Scholar
  28. McWilliams B, Newmann M, Sprevak D (1979) The probability distribution of wind velocity and direction. Wind Eng 3:269–273Google Scholar
  29. Mori Y (1986) Evaluation of several ‘‘single-pass’’ estimators of the mean and the standard deviation of wind direction. J Climate Appl Meteorol 25:1387–1397. doi: 10.1175/1520-0450(1986)025<1387:EOSPEO>2.0.CO;2 CrossRefGoogle Scholar
  30. Pasquill F (1976) Atmospheric dispersion parameters in Gaussian plume modelling: Part II. Possible requirements for change in the Turner workbook values. US EPA Rep. EPA-600/4-760306Google Scholar
  31. Sharan M, Yadav AK, Singh MP (1995) Comparison of sigma schemes for estimation of air pollutant dispersion in low winds. Atmos Environ 29:2051–2059. doi: 10.1016/1352-2310(94)00327-H CrossRefGoogle Scholar
  32. Toda M, Nishida K, Ohte N, Tani M, Musiake K (2002) Observation of energy fluxes and evapotranspiration over terrestrial complex land covers in the tropical monsoon environment. J Meteorol Soc Jpn Ser II 80:465–484. doi: 10.2151/jmsj.80.465 CrossRefGoogle Scholar
  33. Weber RO (1997) Estimators for the standard deviation of horizontal wind direction. J Appl Meteorol 36:1403–1415. doi:10.1175%2F1520-0450%281997%29036%3C1403%3AEFTSDO%3E2.0.CO%3B2Google Scholar
  34. Weber RO (1998) Estimators for the standard deviations of lateral, longitudinal and vertical wind components. Atmos Environ 32:3639–3646. doi: 10.1016/S1352-2310(98)00083-1 CrossRefGoogle Scholar
  35. Wesely ML, Cook DR, Hart RL (1983) Fluxes of gases and particles above a deciduous forest in wintertime. Bound Layer Meteorol 27:237–255. doi: 10.1007/BF00125000 CrossRefGoogle Scholar
  36. Yadav AK, Sharan M (1996) Statistical evaluation of sigma schemes for estimating dispersion in low wind conditions. Atmos Environ 30:2595–2606. doi: 10.1016/1352-2310(95)00479-3 CrossRefGoogle Scholar
  37. Yamartino RJ (1984) A comparison of several “single pass” estimators of the standard deviation of wind direction. J Climate Appl Meteorol 23:1362–1366. doi: 10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of MaltaMsidaMalta

Personalised recommendations