Meteorology and Atmospheric Physics

, Volume 127, Issue 3, pp 355–368 | Cite as

Mapping optical ray trajectories through island wake vortices

  • Christopher G. NunaleeEmail author
  • Ping He
  • Sukanta Basu
  • Jean Minet
  • Mikhail A. Vorontsov
Original Paper


Optical wave propagation through the atmosphere is complicated by organized atmospheric structures, spanning a wide range of length and time scales, which induce spatio-temporal variability in refraction. Therefore, when considering long-range optical ray trajectories, the influence of such structures on the propagation path becomes significantly more complex compared to a hypothetically homogeneous atmosphere. In this paper, we use a coupled mesoscale model and ray tracing framework to analyze the refractive anomalies associated with the wake vortices induced by three geographically diverse islands under various meteorological conditions. We identify organized mesoscale wake vortices (e.g., von Kármán vortices) which are sometimes capable of distorting optical ray trajectories, through ray bending, tens of meters at a range of approximately 50 km. In addition, we find in some cases that vertical oscillations, or perturbations, to the simulated ray trajectories share a frequency with the vortex shedding frequency on the order of hours. At the same time, it is also observed that the intensity and predictability of the wake vortex-induced ray bending varies from case to case. Collectively, these results highlight the value of using mesoscale models in optical wave propagation studies above conventional approaches which do not explicitly consider horizontally heterogeneous atmospheres.


Planetary Boundary Layer Wake Region Vortex Street Wake Vortex Vertical Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support received from the Department of Defense AFOSR under award number (FA9550-12-1-0449) in addition to financial and computational support received from the Renaissance Computing Institute. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Department of Defense.


  1. Alliss RJ, Felton BD (2009) Validation of optical turbulence simulations from a numerical weather prediction model in support of adaptive optics design. In: Advanced maui optical and space surveillance technologies conference, vol 1, p 54Google Scholar
  2. Atkinson B, Li J, Plant R (2001) Numerical modeling of the propagation environment in the atmospheric boundary layer over the Persian Gulf. J Appl Meteorol 40(3):586–603CrossRefGoogle Scholar
  3. Atkinson B, Zhu M (2006) Coastal effects on radar propagation in atmospheric ducting conditions. Meteorol Appl 13(1):53–62CrossRefGoogle Scholar
  4. Berlin P (1981) Meteosat tracks Karman vortex streets in the atmosphere. ESA Bull 1:16–19Google Scholar
  5. Berrisford P, Dee D, Fielding K, Fuentes M, Kllberg P, Kobayashi S, Uppala S (2009) The ERA-Interim archive. Technical report, ECMWF. ERA Report Series, No. 1Google Scholar
  6. Buck A (1967) Effects of the atmosphere on laser beam propagation. Appl Opt 6(4):703–708CrossRefGoogle Scholar
  7. Burk SD, Haack T (2000) The dynamics of wave clouds upwind of coastal orography. Mon Weather Rev 128(5):1438–1455CrossRefGoogle Scholar
  8. Burk SD, Haack T, Rogers L, Wagner L (2003) Island wake dynamics and wake influence on the evaporation duct and radar propagation. J Appl Meteorol 42(3)Google Scholar
  9. Burk SD, Thompson WT (1997) Mesoscale modeling of summertime refractive conditions in the Southern California Bight. J Appl Meteorol 36(1):22–31CrossRefGoogle Scholar
  10. Caldeira RM, Tomé R (2013) Wake response to an ocean-feedback mechanism: Madeira Island case study. Bound Layer Meteorol 148(2):419–436CrossRefGoogle Scholar
  11. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Mon Weather Rev 129:587–604CrossRefGoogle Scholar
  12. Chopra K, Hubert L (1965) Mesoscale eddies in wake of islands. J Atmos Sci 22(6):652–657CrossRefGoogle Scholar
  13. Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573CrossRefGoogle Scholar
  14. Couvelard X, Caldeira R, Araújo I, Tomé R (2012) Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira island: 2008 numerical case study. Dyn Atmos Oceans 58:128–149CrossRefGoogle Scholar
  15. Dion, D. (1995). Refraction effects on EO system detection ranges in coastal environments. In: AGARD conference proceedings on propagation assessment in coastal environments, AGARD-CP-567. DTIC DocumentGoogle Scholar
  16. Doss-Hammel SM, Zeisse CR, Barrios AE, de Leeuw G, Moerman M, de Jong AN, Frederickson PA, Davidson KL (2002) Low-altitude infrared propagation in a coastal zone: refraction and scattering. Appl Opt 41(18):3706–3724CrossRefGoogle Scholar
  17. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  18. Etling D (1989) On atmospheric vortex streets in the wake of large islands. Meteorol Atmos Phys 41(3):157–164CrossRefGoogle Scholar
  19. Fiorino ST, Bartell RJ, Krizo MJ, Caylor GL, Moore KP, Harris TR, Cusumano SJ (2008) A first principles atmospheric propagation and characterization tool: the laser environmental effects definition and reference (LEEDR). In: Lasers and applications in science and engineering. International Society for Optics and Photonics, pp 68780B–68780BGoogle Scholar
  20. Ghatak A (2009) Optics. Tata MicGraw-Hill, p 532Google Scholar
  21. Gurvich AS, Gorbunov ME, Fedorova OV, Kirchengast G, Proschek V, Abad GG, Tereszchuk KA (2012) Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment. Appl Opt 51(30):7374–7383CrossRefGoogle Scholar
  22. Haack T, Wang C, Garrett S, Glazer A, Mailhot J, Marshall R (2010) Mesoscale modeling of boundary layer refractivity and atmospheric ducting. J Appl Meteorol Climatol 49(12):2437–2457CrossRefGoogle Scholar
  23. Heinze R, Raasch S, Etling D (2012) The structure of Kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteorologische Zeitschrift 21(3):221–237CrossRefGoogle Scholar
  24. Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  25. Ives RL (1948) Meteorological conditions accompanying mirages in the Salt Lake Desert. J Franklin Inst 245(6):457–473CrossRefGoogle Scholar
  26. Janjić ZI (1994) The step-mountain ETA coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  27. Kain J (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  28. Kay S, Hedley JD, Lavender S (2009) Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths. Remote Sensing 1(4):697–730CrossRefGoogle Scholar
  29. Krolik JL, Tabrikian J, Vasudevan A, Rogers LT (1999) Using radar sea clutter to estimate refractivity profiles associated with the capping inversion of the marine atmospheric boundary layer. In: Geoscience and remote sensing symposium, 1999. IGARSS’99 proceedings. IEEE 1999 International, vol 1. IEEE, pp 649–651Google Scholar
  30. Kunz GJ, Moerman MM, van Eijk AM, Doss-Hammel SM, Tsintikidis D (2004) EOSTAR: an electro-optical sensor performance model for predicting atmospheric refraction, turbulence, and transmission in the marine surface layer. In: Remote sensing. International Society for Optics and Photonics, pp 81–92Google Scholar
  31. Lehn W (1979) The Novaya Zemlya effect: an Arctic mirage. J Opt Soc Am 69(5):776–781CrossRefGoogle Scholar
  32. Lehn WH, Friesen W (1992) Simulation of mirages. Appl Opt 31(9):1267–1273CrossRefGoogle Scholar
  33. Lehn WH, Legal TL (1998) Long-range superior mirages. Appl Opt 37(9):1489–1494CrossRefGoogle Scholar
  34. Lehn WH, van der Werf S (2005) Atmospheric refraction: a history. Appl Opt 44(27):5624–5636CrossRefGoogle Scholar
  35. Li X, Zheng W, Zou C, Pichel W (2008) A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors 8(5):3321–3334CrossRefGoogle Scholar
  36. Lyons WA, Fujita TT (1966) Mesoscale motions in oceanic stratus: as revealed by satellite data. Mon Weath Rev 96(5):304–314CrossRefGoogle Scholar
  37. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  38. NASA (2013) Moderate resolution imaging spectroradiometer image galleryGoogle Scholar
  39. NASA (2014) Multi-angle imaging spectroradiometerGoogle Scholar
  40. Nunalee C, Basu S (2014) On the periodicity of atmospheric von Kármán vortex streets. Environ Fluid Mech 14:1335–1355CrossRefGoogle Scholar
  41. Ochs GR, Lawrence RS (1969) Measurements of laser radar beam spread and curvature over near-horizontal atmospheric paths. Technical report, ESSA. ERL 106-WPL 6Google Scholar
  42. Puchalski J (1992) Numerical determination of ray tracing: a new method. Appl Opt 31(31):6789–6799CrossRefGoogle Scholar
  43. Purves CG (1974) Geophysical aspects of atmospheric refraction. Technical report, DTIC DocumentGoogle Scholar
  44. Rees W (1988) Polar mirages. Polar Record 24(150):193–198CrossRefGoogle Scholar
  45. Rotunno R, Grubišic V, Smolarkiewicz P (1999) Vorticity and potential vorticity in mountain wakes. J Atmos Sci 56(16):2796–2810CrossRefGoogle Scholar
  46. Schär C, Durran DR (1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J Atmos Sci 54(4):534–554CrossRefGoogle Scholar
  47. Schär C, Smith RB (1993) Shallow-water flow past isolated topography. Part I: vorticity production and wake formation. J Atmos Sci 50(10):1373–1400CrossRefGoogle Scholar
  48. Smolarkiewicz PK, Rotunno R (1989) Low Froude number flow past three-dimensional obstacles. Part I: baroclinically generated lee vortices. J Atmos Sci 46(8):1154–1164CrossRefGoogle Scholar
  49. Southwell W (1982) Ray tracing in gradient-index media. J Opt Soc Am 72(7):908–911CrossRefGoogle Scholar
  50. Thomson R, Gower J, Bowker N (1977) Vortex streets in the wake of the Aleutian Islands. Mon Weather Rev 105(7):873–884CrossRefGoogle Scholar
  51. Vorontsov MA, Carhart GW, Rao Gudimetla V, Weyrauch T, Stevenson E, Lachinova SL, Beresnev LA, Liu J, Rehder K, Riker JF (2010) Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons. Technical report, DTIC DocumentGoogle Scholar
  52. Wang C, Wilson D, Haack T, Clark P, Lean H, Marshall R (2012) Effects of initial and boundary conditions of mesoscale models on simulated atmospheric refractivity. J Appl Meteorol Climatol 51(1):115–132CrossRefGoogle Scholar
  53. Weichel H (1990) Laser beam propagation in the atmosphere, vol 3. SPIE pressGoogle Scholar
  54. Wheelon AD (2001) Geometrical optics expressions. In: Electromagnetic scintillation, vol 1. Cambridge University Press, Cambridge Books Online, pp 109–135Google Scholar
  55. Young G, Zawislak J (2006) An observational study of vortex spacing in island wake vortex streets. Mon Weather Rev 134(8):2285–2294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Christopher G. Nunalee
    • 1
    Email author
  • Ping He
    • 1
  • Sukanta Basu
    • 1
  • Jean Minet
    • 2
  • Mikhail A. Vorontsov
    • 2
  1. 1.Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  2. 2.Intelligent Optics Laboratory, School of EngineeringUniversity of DaytonDaytonUSA

Personalised recommendations