Advertisement

Meteorology and Atmospheric Physics

, Volume 126, Issue 1–2, pp 13–29 | Cite as

Catchment precipitation processes in the San Francisco valley in southern Ecuador: combined approach using high-resolution radar images and in situ observations

  • Andreas Fries
  • Rütger Rollenbeck
  • Fabian Bayer
  • Victor Gonzalez
  • Fernando Oñate-Valivieso
  • Thorsten Peters
  • Jörg Bendix
Review Article

Abstract

The precise estimation of precipitation quantities in tropical mountain regions is in great demand by ecological and hydrological studies, due to the heterogeneity of the rainfall distribution and the lack of meteorological station data. This study uses radar images and ground station data to provide the required high-resolution precipitation maps. Also wind data are taken into account, due to its influence on the precipitation formation and to demonstrate the relation between synoptic wind, topography and the precipitation distribution inside small mountain valleys. The study analyses the rainfall distribution and amounts of 4 days inside the San Francisco Valley, a small catchment in the tropical Andes of southern Ecuador, representing different seasons and the typical atmospheric flows, which are correlated to the annual precipitation map. The results show that the rainfall distribution and amounts are generally defined by the wind direction and velocity, besides the topographic location in relation to the main barriers and pathways. The dominant wind direction causes a division of the catchment in a wetter eastern and a dryer western part. Moreover, the annual seasons are reversed; the main rainy season for the eastern part occurs between June and August, while the western part reaches the precipitation maximum between January and March. This may have influence on the species composition at the different slopes and the annual hydrological cycle inside the catchment.

Keywords

Wind Speed Austral Summer Mountain Ridge Mountain Chain Study Catchment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The current study was conducted within the framework of the DFG Research Group FOR 816 “Biodiversity and sustainable management of a megadiverse mountain rain forest in South Ecuador” and was generously funded by the German Research Council (DFG, BE 1780/15-2). The methodical knowledge of radar calibration is fundamental for the building of the radar network (RNSE), which is a cooperation project between DFG and the Provincial Government of Loja (GPL; BE 1780/31-1). Special thanks go to the Foundation “Naturaleza y Cultura Internacional” (NCI, Loja) for logistic support, the Universidad Técnica Particular de Loja (UTPL) for the support of the research activities, and the Ministry of the Environment of Ecuador (MAE) for the permission of the research.

References

  1. Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Bendix J, Beck E (2009) Spatial aspects of ecosystem research in a biodiversity hot spot of southern Ecua dor—an introduction. Erdkunde 63(4):305–308CrossRefGoogle Scholar
  3. Bendix J, Rollenbeck R, Palacios E (2004) Cloud classification in the tropics—a suitable tool for climate ecological studies in the high mountains of Ecuador. Int J Remote Sens 25(21):4521–4540CrossRefGoogle Scholar
  4. Bendix J, Rollenbeck R, Göttlicher D, Cermak J (2006) Cloud occurrence and cloud properties in Ecuador. Clim Res 30:133–147CrossRefGoogle Scholar
  5. Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008a) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies 198. Springer, Berlin, pp 63–73CrossRefGoogle Scholar
  6. Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008b) Climate variability. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies 198. Springer, Berlin, pp 280–291Google Scholar
  7. Bendix J, Rollenbeck R, Göttlicher D, Nauß T, Fabian P (2008c) Seasonality and diurnal pattern of very low clouds in a deeply incised valley of the eastern tropical Andes (South Ecuador) as observed by a cost effective WebCam system. Meteorol Appl 15:281–291CrossRefGoogle Scholar
  8. Bendix J, Trachte K, Cermak J, Rollenbeck R, Nauß T (2009) Formation of convective clouds at the foothills of the tropical eastern Andes (South Ecuador). J Appl Meteorol 48:1–17Google Scholar
  9. Breuer L, Windhorst D, Fries A, Wilke W (2013) Supporting, regulation, and provisioning hydrological services. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecological studies 221. Springer, Berlin, pp 107–116CrossRefGoogle Scholar
  10. Daly C, Smith JW, Smith JI (2007) High-resolution spatial modelling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States. J Appl Meteorol Climatol 46:1565–1586CrossRefGoogle Scholar
  11. Davis BM (1987) Uses and abuses of cross-validation in geostatistics. Math Geol 19(3):241–248CrossRefGoogle Scholar
  12. Delrieu G, Boudevillain B, Nicol J, Chapon B, Kirstetter PE, Andrieu H, Faure D (2009) Bolléne-2002 experiment: radar quantitative precipitation estimation in the Cévennes-Vivarais region, France. J Appl Meteorol Climatol 48:1422–1447CrossRefGoogle Scholar
  13. Emck P (2007) A climatology of South Ecuador. Dissertation, Friedrich-Alexander Universität Erlangen, GermanyGoogle Scholar
  14. Foresti L, Pozdnoukhov A (2012) Exploration of Alpine orographic precipitation patterns with radar image processing and clustering techniques. Meteorol Appl 19:407–419CrossRefGoogle Scholar
  15. Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse mountain ecosystem in southern Ecuador, and its regionalization. Erdkunde 63(4):321–335CrossRefGoogle Scholar
  16. Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Agric For Met 152:17–30CrossRefGoogle Scholar
  17. Gabella M, Notarpietro R, Bertoldo S, Prato A, Lucianaz C, Rorato O, Allegretti M, Perona G (2012) A network of portable, low-cost, XBand radars, Doppler radar observations—weather radar, wind profiler, ionospheric radar, and other advanced applications. In: Bech J (ed) InTech, Croatia, pp 175–202. ISBN: 978-953-51-0496-4Google Scholar
  18. Germann U, Joss J (2004) Operational measurement of precipitation in mountainous terrain. In: Meischner P (ed) Weather radar: principles and advanced applications. Springer, Berlin, pp 52–77CrossRefGoogle Scholar
  19. Germann U, Galli G, Boscacci M, Bolliger M (2006) Radar precipitation measurement in a mountainous area. QJR Meteorol Soc 132:1669–1692CrossRefGoogle Scholar
  20. Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL—ensemble radar precipitation estimation for hydrology in a mountainous region. QJR Meteorol Soc 135:445–456CrossRefGoogle Scholar
  21. Günter S, Gonzalez P, Alvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manag 258:81–91CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Houze RA Jr, James CN, Medina S (2001) Radar observations of precipitation and airflow on the Mediterranean side of the Alps: autumn 1998 and 1999. QJR Meteorol Soc 127:2537–2558CrossRefGoogle Scholar
  24. Hutchinson MF (1998a) Interpolation of rainfall data with thin plate smoothing splines: I. Two dimensional smoothing of data with short range correlation. J Geogr Inf Decis Anal 2:139–151Google Scholar
  25. Hutchinson MF (1998b) Interpolation of rainfall data with thin plate smoothing splines: II. Analysis of topographic dependence. J Geogr Inf Decis Anal 2:168–185Google Scholar
  26. INAMHI (Instituto Nacional de Hidrología y Meteorología) (2000–2009) Anuarios Meteorológicos. Quito, Ecuador. http://www.serviciometeorologico.gob.ec/biblioteca/. Accessed 31 Jan 2014
  27. Jensen NE (2002) X-band local area weather radar—preliminary calibration results. Water Sci Technol 45:135–138Google Scholar
  28. Jensen NE (2004) Local area weather radar documentation. DHI-Institute for the water environment: DHI/LAWR/TN 2/10-2004 V 3.0Google Scholar
  29. Jiménez PA, González-Rouco JF, Montávez JP, Navarro J, García-Bustamante E, Valero F (2008) Surface wind regionalization in complex terrain. J Appl Meteorol Climatol 47:308–325CrossRefGoogle Scholar
  30. Johansson B, Chen D (2005) Estimation of areal precipitation for runoff modelling using wind data: a case study in Sweden. Clim Res 29:53–61CrossRefGoogle Scholar
  31. Ludwig FL, Horel J, Whiteman CD (2004) Using EOF analysis to identify important wind pattern in mountain valley. J Appl Meteorol 43:969–983CrossRefGoogle Scholar
  32. Luo W, Taylor MC, Parker SR (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28:947–959CrossRefGoogle Scholar
  33. McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010) Observational evidence from two mountain regions that near-surface winds speeds are declining more rapidly at higher elevation than lower elevations: 1960–2006. Geophys Res Lett 37. doi: 10.1029/2009gl042255
  34. Neiman PJ, White AB, Ralph FM, Gottas DJ, Gutman SI (2009) A water vapour flux tool for precipitation forecasting. Water Manag 162:83–94Google Scholar
  35. New M, Hulme M, Jones P (2000) Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Climate 13:2217–2238CrossRefGoogle Scholar
  36. Ochoa P, Fries A, Pilar M, Rodríguez-Díaz JA, Boll J (2013) Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degrad Dev. doi: 10.1002/ldr.2219 Google Scholar
  37. Oñate-Valdivieso F, Bosque Sendra J (2007) Extracción de modelos digitales de elevación a partir de imágenes ASTER para la determinación de características morfométricas de cuencas hidrográficas (in Spanish). In: Rivas R, Grisotto A, Sacido M (eds) Teledetección: Hacia un mejor entendimiento de la dinámica global y regional. XII Congreso de la Asociación Española de Teledetección, Mar del Plata, pp 457–464Google Scholar
  38. Palomino I, Martín F (1995) A simple method for spatial interpolation of wind in complex terrain. J Appl Meteorol 34:1678–1693CrossRefGoogle Scholar
  39. Panziera L, Germann U (2010) The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. QJR Meteorol Soc 136:222–238CrossRefGoogle Scholar
  40. Poveda G, Mesa OJ, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvarez JF (2005) The diurnal cycle of precipitation in the tropical Andes of Columbia. Mon Weather Rev 133:228–240CrossRefGoogle Scholar
  41. Richter M (2003) Using plant functional types and soil temperatures for eco-climatic interpretation in southern Ecuador. Erdkunde 57:161–181CrossRefGoogle Scholar
  42. Richter M, Moreira-Muñoz A (2005) Heterogeneidad climática y diversidad vegetacional en el sur de Ecuador: un método de fitoindicación (in Spanish). Revista Peruana de Biología 12:217–238Google Scholar
  43. Rollenbeck R, Bendix J (2006) Experimental calibration of a cost-effective X-band weather radar for climate ecological studies in southern Ecuador. Atmos Res 79:296–316CrossRefGoogle Scholar
  44. Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99:277–289CrossRefGoogle Scholar
  45. Rollenbeck R, Bendix J, Fabian P, Boy J, Dalitz H, Emck P, Oesker M, Wilcke W (2007) Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions. J Atmos Ocean Technol 24:156–168CrossRefGoogle Scholar
  46. Rollenbeck R, Bendix J, Fabian P (2011) Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador. Special issue: hydrometeorology of tropical montane cloud forests. Hydrol Process 25(3):344–352CrossRefGoogle Scholar
  47. Rotunno R, Houze RA (2007) Lessons on orographic precipitation from the Mesoscale Alpine Programme. QJR Meteorol Soc 133:811–830CrossRefGoogle Scholar
  48. Smith RB (2003) A linear upslope-time-delay model for orographic precipitation. J Hydrol 282:2–9CrossRefGoogle Scholar
  49. Szturc J, Katarzyna O, Jurczyk A (2011) Quality index scheme for quantitative uncertainty characterization of radar-based precipitation. Meteorol Appl 18:407–420CrossRefGoogle Scholar
  50. Tait A, Henderson R, Turner R, Zheng X (2006) Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol 26:2097–2115CrossRefGoogle Scholar
  51. Tomczak M (1998) Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)—cross-validation/Jackknife approach. J Geogr Inf Decis Anal 2(2):18–30Google Scholar
  52. Trachte K, Nauß T, Bendix J (2010) The impact of different terrain configurations on the formation and dynamics of katabatic flows—idealized case study. Bound-Layer Meteorol 134(2):307–325CrossRefGoogle Scholar
  53. Villarini G, Krajewski WF (2010) Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Survey Geophys 31:107–129CrossRefGoogle Scholar
  54. Vuille M, Raymond S, Keimig B, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105:12447–12460CrossRefGoogle Scholar
  55. Wang Y, Chandrasekar V (2010) Quantitative precipitation estimation in the CASA X-band dual polarization radar network. J Atmos Ocean Technol 27:1665–1676CrossRefGoogle Scholar
  56. White AB, Neiman PJ, Ralph FM, Kingsmill DE, Persson POG (2003) Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J Hydrometeorol 4:264–282CrossRefGoogle Scholar
  57. Windhorst D, Waltz T, Timbe E, Frede HG, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17:409–419CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Andreas Fries
    • 1
    • 2
  • Rütger Rollenbeck
    • 1
  • Fabian Bayer
    • 1
  • Victor Gonzalez
    • 1
    • 2
  • Fernando Oñate-Valivieso
    • 2
  • Thorsten Peters
    • 3
  • Jörg Bendix
    • 1
  1. 1.LCRS, Department of Geography, Faculty of Geography (FOG)University of MarburgMarburgGermany
  2. 2.Departamento de Geología y Minas e Ingeniería Civil (DGMIC), Hidrología y Climatología Working GroupUniversidad Técnica Particular de LojaSan Cayetano AltoEcuador
  3. 3.Institute for GeographyUniversity of ErlangenErlangenGermany

Personalised recommendations