Meteorology and Atmospheric Physics

, Volume 120, Issue 1–2, pp 73–82

Least-squares harmonic estimation of the tropopause parameters using GPS radio occultation measurements

  • Mohammad Ali Sharifi
  • Ali Sam Khaniani
  • Salim Masoumi
  • Torsten Schmidt
  • Jens Wickert
Original Paper

Abstract

In order to investigate temporal variations of the tropopause parameters, Least-Squares Harmonic Estimation (LS-HE) is applied to the time series of the tropopause temperatures and heights derived from Global Positioning System Radio Occultation (GPS RO) atmospheric profiles of CHAMP, GRACE and COSMIC missions from January 2006 until May 2010 in different regions of Iran. By applying the univariate LS-HE to the completely unevenly spaced time series of the tropopause temperatures and heights, annual and diurnal components are detected together with their higher harmonics. The multivariate LS-HE estimates the main periodic signals, particularly diurnal and semidiurnal cycles, more clearly than the univariate LS-HE. Mixing in the values of the tropopause height and temperature is seen to occur in winter at lower latitudes (around 30°) as a result of subtropical jet, and in summer at higher latitudes (36°–42°) as an effect of subtropical high. A bimodal pattern is observed in the frequency histograms of the tropopause heights, in which the primary modes for the southern and northern parts of Iran correspond to subtropical and extratropical heights, respectively.

References

  1. Amiri-Simkooei AR (2007) Least-squares variance component estimation: Theory and GPS applications. Ph.D Dissertation, Mathematical Geodesy and Positioning, Faculty of Aerospace Engineering, Delft University of TechnologyGoogle Scholar
  2. Amiri-Simkooei AR, Asgari J (2011) Harmonic analysis of total electron contents time series: methodology and results. J GPS Solut. doi: 10.1007/s10291-011-0208-x (Online FirstTM)
  3. Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413. doi:10.1029/2006JB004913 CrossRefGoogle Scholar
  4. Gorbunov ME (1993) Three-dimensional satellite refractive tomography of the atmosphere: numerical-simulation. J Radio Sci 31:95–104CrossRefGoogle Scholar
  5. Gorbunov ME and Sokolovskiy SV (1993) Remote sensing of refractivity from space for global observations of atmospheric parameters. Max-Planck-Institute fur Meteorologie Report No. 119, Hamburg, GermanyGoogle Scholar
  6. Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imag Syst Tech 5:174–184CrossRefGoogle Scholar
  7. Hall CM, Hansen G, Sigernes F, Kuyeng Ruiz KM (2011) Tropopause height at 78 N 16 E: average seasonal variation 2007–2010. J Atmo Chem Phys Disc. doi:10.5194 Google Scholar
  8. Hashiguchi NO, Yamanaka MD, Ogino S, Shiotani M, Sribimawati T (2006) Seasonal and interannual variations of temperature in the tropical tropopause layer (TTL) over Indonesia based on operational rawinsonde data during 1992–1999. J Geophys Res 111:D15110. doi:10.1029/2005JD006501 CrossRefGoogle Scholar
  9. Healy SB (2001) Smoothing radio occultation bending angles above 40 km. Ann Geophys 19(4):459–478CrossRefGoogle Scholar
  10. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33(4):403–439CrossRefGoogle Scholar
  11. Hudson RD, Frolov AD, Andrade MF, Follette MB (2003) The total ozone field separated into meteorological regimes. Part I: defining the regimes. J Atmos Sci 60:1669–1677CrossRefGoogle Scholar
  12. Khandu JL, Awange J, Wickert J, Schmidt T, Sharifi MA, Heck B (2010) GNSS remote sensing of the Australian tropopause. Climatic Change 105:1–22Google Scholar
  13. Krishna Murthy BV, Parmeshwaran K, and Rose KO (1985) Temporal variation of the tropopause characteristics. J Atmos Sci 43:914–922, 986Google Scholar
  14. Kursinski ER, Hajj GA, Schofield T, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465CrossRefGoogle Scholar
  15. Kursinski ER, Hajj GA, Leroy SS, Herman B (2000) The GPS radio occultation technique. Terr Atmos Ocean Sci 11(1):235–272Google Scholar
  16. Leroy SS, Ao CO, Verkhoglyadova O (2012) Mapping GPS Radio Occultation data by Bayesian interpolation. J Atmos Ocean Tech 29(8):1062–1074CrossRefGoogle Scholar
  17. Li W, Ma H, Pang Z, Cai Z (2010) Diurnal variations of tropopause over Wuhan. International Conference on Industrial Mechatronics and AutomationGoogle Scholar
  18. Lomb NR (1976) Least squares frequency analysis of unevenly spaced data. Astrophys Space Sci 39(2):447–462. doi:10.1007/BF00648343 CrossRefGoogle Scholar
  19. Mehta SK (2010) Studies on Characteristics of tropical tropopause. Ph.D Dessertation, Atmospheric Science, Department of Atmospheric Sciences, School of Marine Sciences, Cochin University of Science And Technology, Cohin-682016, Kerala, IndiaGoogle Scholar
  20. Mortensen MD, Hoeg P (1998) Inversion of GPS occultation measurements using fresneldi:raction theory. Geophys Res Lett 25(13):2441–2444CrossRefGoogle Scholar
  21. Pan LL, Randel WJ, Gary BL, Mahoney MJ, Hintsa EJ (2004) Definitions and sharpness of the extratropicaltropopause: a trace gas perspective. J Geophys Res 109(D23):D23103CrossRefGoogle Scholar
  22. Randel WJ, Wu F, Gaffen DJ (2000) Interannnual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J Geophys Res 105(D12):15509–15523CrossRefGoogle Scholar
  23. Reid GC, Gage KS (1985) Interannual variations in the height of tropical tropopause. J Geophys Res 90:5629–5635CrossRefGoogle Scholar
  24. Reid GC, Gage KS (1996) The tropical tropopause over the western Pacific: Wave driving, convection, and the annual cycle. J Geophys Res 101:21233–21241CrossRefGoogle Scholar
  25. Revathy K, PrabhakaranNayar SR, Krishna Murthy BV (2001) Diurnal variation of tropospheric temperature at a tropical station. Annales Geophysicae 19:1001–1005CrossRefGoogle Scholar
  26. Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: decadal changes. J Geophys Res 108(D1):4002. doi:10.1029/2002JD002258 CrossRefGoogle Scholar
  27. Santer BD, Wigley TM, Simmons AJ, Kaallberg PW, Kelly GA, Uppala SM (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104CrossRefGoogle Scholar
  28. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12(3):131–136CrossRefGoogle Scholar
  29. Scargle JD (1989) Studies in astronomical time series analysis III.Autocorrelation and cross-correlation functions of unevenly sampled data. Astrophys J 343:874–887CrossRefGoogle Scholar
  30. Scargle JD (1997) Astronomical time series analysis: new methods for studying periodic and aperiodic systems. In: Maoz D, Steinberg A, Leibowitz EM (eds) Astronomical time series. Kluwer, Dordrecht, p 1Google Scholar
  31. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem phys 5:1473–1488Google Scholar
  32. Schmidt T, Wickert J, Haser A (2010) Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv Space Res 46(2010):150–161. doi:10.1016/j.asr.2010.01.021 CrossRefGoogle Scholar
  33. Schoeberl MR (2004) Extratropical stratosphere-troposphere mass exchange. J Geophys Res 109(D13):D13303CrossRefGoogle Scholar
  34. Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi:10.10292007JD008861 CrossRefGoogle Scholar
  35. Son SW, Lee S (2007) Intraseasonal variability of the zonal mean tropical tropopause height. J Atmos Sci 64:2695–2706CrossRefGoogle Scholar
  36. Steiner AK, Lackner BC, Ladstadter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci 46:RSOD24. doi:10.1029/2010RS004614 CrossRefGoogle Scholar
  37. Vanicek P (1971) Further development and properties of the spectral analysis by least-squares. Astrophys Space Sci 12(1):10–33. doi:10.1007/BF00656134 CrossRefGoogle Scholar
  38. Wickert J, Beyerle G, Schmidt T, Healy SB, Heise S, Michalak G, Rothacher M (2006) GPS based atmospheric sounding with CHAMP: results achieved after four years. In: Proceedings of the 2005 EUMETSAT Meteorological Satellite Conference, Dubrovnik, CroatiaGoogle Scholar
  39. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S et al (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. TerrAtmos Ocean Sci 20:35–50Google Scholar
  40. WMO (1957) Definition of tropopause. World Meteorological Organisation, GenevaGoogle Scholar
  41. Zängl G, Hoinka KP (2001) Thetropopause in the polar regions. J Climate 14:3117–3139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Mohammad Ali Sharifi
    • 1
  • Ali Sam Khaniani
    • 1
  • Salim Masoumi
    • 1
  • Torsten Schmidt
    • 2
  • Jens Wickert
    • 2
  1. 1.Department of Surveying and Geomatics EngineeringUniversity College of Engineering, University of TehranTehranIran
  2. 2.Department of Geodesy and Remote SensingGerman Research Center for Geosciences (GFZ)PotsdamGermany

Personalised recommendations