Meteorology and Atmospheric Physics

, Volume 119, Issue 1–2, pp 59–70 | Cite as

Impact of chemical and meteorological boundary and initial conditions on air quality modeling: WRF-Chem sensitivity evaluation for a European domain

  • Mathias Ritter
  • Mathias D. Müller
  • Oriol Jorba
  • Eberhard Parlow
  • L.-J. Sally Liu
Original Paper


This study evaluates the impact of different chemical and meteorological boundary and initial conditions on the state-of-the-art Weather Research and Forecasting (WRF) model with its chemistry extension (WRF-Chem). The evaluation is done for July 2005 with 50 km horizontal resolution. The effect of monthly mean chemical boundary conditions derived from the chemical transport model LMDZ-INCA on WRF-Chem is evaluated against the effect of the preset idealized profiles. Likewise, the impact of different meteorological initial and boundary conditions (GFS and Reanalysis II) on the model is evaluated. Pearson correlation coefficient between these different runs range from 0.96 to 1.00. Exceptions exists for chemical boundary conditions on ozone and for meteorological boundary conditions on PM10, where coefficients of 0.90 were obtained. Best results were achieved with boundary and initial conditions from LMDZ-INCA and GFS. Overall, the European simulations show encouraging results for observed air pollutant, with ozone being the most and PM10 being the least satisfying.



This study was supported by the Swiss National Science Foundation and is part of the SAPALDIA study. Further supporters are the Federal Office for Forest, Environment and Landscape; the Federal Office of Public Health; the Federal Office of Roads and Transport; the cantons government of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, Ticino, and Zurich; the Swiss Lung League; the Lung Leagues of Basel-Stadt/Basel-Landschaft, Geneva, Ticino, and Zurich. The work has been performed under the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission—Capacities Area—Research Infrastructures. Data from the GENEMIS project coordinated by the Institute of Energy Economics and the Rational Use of Energy (IER) at the University of Stuttgart have been used.


  1. Ackermann-Liebrich U, Leuenberger P, Schwartz J, Schindler C, Monn C, Bolognini G, Bongard JP, Brändli O, Domenighetti G, Elsasser S, Grize L, Karrer W, Keller R, Keller-Wossidlo H, Künzli N, Martin BW, Medici RC, Perruchoud AP, Schöni MH, Tschopp JM, Villiger B, Wüthrich B, Zellweger JP, Zemp E, SAPALDIA team (1997) Lung function and long term exposure to air pollutants in Switzerland. Am J Respir Crit Care Med 155:122–129Google Scholar
  2. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, Schindler C, Felber~Dietrich D, Stutz EZ, Bayer-Oglesby L, Baum F, Brändli O, Downs SH, Keidel D, Gerbase MW, Imboden M, Keller R, Knöpfli B, Künzli N, Nicod L, Staedele P, Tschopp JM, Zellweger JP, Leuenberger P, SAPALDIA team (2005) Follow-up of the Swiss Cohort study on air pollution and lung diseases in adults (SAPALDIA 2) 1991–2003: methods and characterization of participants. Soz Praventivmed 50(4):245–263CrossRefGoogle Scholar
  3. Baldasano JM, Jiménez-Guerrero P, Jorba O, Pérez C, López E, Güereca P, Martín F, Vivanco MG, Palomino I, Querol X, Pandolfi M, Sanz MJ, Diéguez JJ (2008) Caliope: an operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands—first annual evaluation and ongoing developments. Adv Sci Res 2:89–98CrossRefGoogle Scholar
  4. Bellander T, Berglind N, Gustavsson P, Jonson T, Nyberg F, Pershagen G, Järup L (2001) Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in Stockholm. Environ Health Perspect 109:633–639CrossRefGoogle Scholar
  5. Bessagnet B, Hodzic A, Vautard R, Beekmann M, Cheinet S, Honoré C, Liousse C, Rouil L (2004) Aerosol modeling with CHIMERE: preliminary evaluation at the continental scale. Atmos Environ 38:2830–2817CrossRefGoogle Scholar
  6. Chen F, Dudhia J (2001) Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  7. Cohen MA, Adar SD, Allen RW, Avol E, Curl CL, Gould T, Hardie D, Ho A, Kinney P, Larson TV, Sampson P, Sheppard L, Stukovsky KD, Swan SS, Liu SLJ, Kaufman JD (2009) Approach to estimating participant pollutant exposures in the multi-ethnic study of atherosclerosis and air pollution (MESA Air). Environ Sci Technol 43:4687–4693CrossRefGoogle Scholar
  8. de Meij A, Gzella A, Cuvelier C, Thunis P, Bessagnet B, Vinuesa JF, Menut L, Kelder HM (2009) The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations. Atmos Chem Phys 9:6611–6632CrossRefGoogle Scholar
  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  10. EMEP (2010) EMEP measurement data online. URL
  11. Fast JD, Gustafson WI, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Grell GA, Peckham SE (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res [Atmos] 111:D21305CrossRefGoogle Scholar
  12. Friedrich R, Reis S (eds) (2004) Emissions of air pollutants. Measurements, calculations and uncertainties. Springer, BerlinGoogle Scholar
  13. Grell G, Peckham S, Schmitz R, McKeen S, Frost G, Skamarock W, Eder B (2005) Fully coupled online chemistry within the WRF model. Atmos Environ 39:6957–6975CrossRefGoogle Scholar
  14. Grell GA, Emeis S, Stockwell WR, Schoenemeyer T, Forkel R, Michalakes J, Knoche R, Seidl W (2000) Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos Environ 34:1435–1453CrossRefGoogle Scholar
  15. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  16. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffman R, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Menthel TF, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  17. Hauglustaine DA, Hourdin L, Filiberti MA, Walters S, Lamarque JF, Holland EA (2004) Interactive chemistry in the Laboratoire de Météorologie dynamique general circulation model: description and background tropospheric chemistry evaluation. J Geophys Res 109:D043141–D043144Google Scholar
  18. Jacobson MZ (2005) Fundamentals of atmospheric modeling, 2nd edn. Cambrigde, New YorkGoogle Scholar
  19. Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429–1443CrossRefGoogle Scholar
  20. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  21. Janjic ZI (1996) The surface layer in the NCEP Eta Model. In: 11th conference on numerical weather prediction. American Meteorological Society, Norfolk, pp 354–355Google Scholar
  22. Janjic ZI (2000) Comments on “Development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57:3686CrossRefGoogle Scholar
  23. Janjic ZI (2001) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. Techical report, NCEP, office Note, No. 437Google Scholar
  24. Kaminski JW, Neary L, Struzewska J, McConnell JC, Lupu A, Jarosz J, Toyota K, Gong SL, Côté J, Liu X, Chance K, Richter A (2008) GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes. Atmos Chem Phys 8:3255–3281CrossRefGoogle Scholar
  25. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Atmos Meteorol Soc 11:1631–1643CrossRefGoogle Scholar
  26. Korsholm US, Baklanov A, Gross A, Mahura A, Sass BH, Kaas E (2008) Online coupled chemical weather forecasting based on HIRLAM—overview and prospective of Enviro-HIRLAM. HIRLAM Newsl 54:151–168Google Scholar
  27. Liu LJS, Curjuric I, Keidel D, Heldstab J, Künzli N, Bayer-Oglesby L, Ackermann-Liebrich U, Schindler C, SAPALDIA team (2007) Characterization of source-specific air pollution exposure for a large population-based Swiss Cohort (SAPALDIA). Environ Health Perspect 115(11):1638–1645CrossRefGoogle Scholar
  28. Liu SC, McKeen SA, Hsie EY, Lin X, Kelly KK, Bradshaw JD, Sandholm ST, Browell EV, Gregory GL, Sachse GW, Bandy AR, Thornton DC, Blake DR, Rowland FS, Newell R, Heikes BG, Singh H, Talbot RW (1996) Model study of tropospheric trace species distributions during PEM-West A. J Geophys Res 101:2073–2085CrossRefGoogle Scholar
  29. Matthias V (2008) The aerosol distribution in Europe derived with the community multiscale air quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements. Atmos Chem Phys 8:5077–5097CrossRefGoogle Scholar
  30. McKeen SA, Hsie EY, Trainer M, Tallamaraju R, Liu SC (1991) A regional model study of the ozone budget in the Eastern United States. J Geophys Res 96:10809–10845CrossRefGoogle Scholar
  31. Mlawer EJ, Taubman SJ, Brown DP, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  32. Pay MT, Piot M, Jorba O, Gassó S, Gonçalves M, Basart S, Dabdub D, Jiménez-Guerrero P, Baldasano JM (2010) A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004. Atmos Environ 44(27):3322–3342CrossRefGoogle Scholar
  33. Peckham SE, Grell GA, McKeen SA, Fast JD, Gustafson WI, Ghan SJ, Zaveri R, Easter RC, Wiedinmyer C, Schmitz R, Salzmann M, Freitas SR (2010) WRF/Chem Version 3.2 User’s Guide. NOAA, PNNL, NCAR, University of Chile, Max Planck Institute for Chemistry, Centro de Previsao de Tempo e Estudos ClimaticosGoogle Scholar
  34. Ritter M (2009) Air pollution modelling for Swizerland. In: Monfardini S (ed) Science and supercomputing in Europe—report 2008, CINECA Consorzio InteruniversitarioGoogle Scholar
  35. Rogers E, Black T, Ferrier B, Lin Y, Parrish D, DiMego G (2001) Changes to the NCEP meso eta analysis and forecast system: increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis.
  36. Sakulyanontvittaya T, Duhl T, Wiedinmyer C, Helmig D, Matsunaga S, Potosnak M, Milford J, Guenther A (2008) Monoterpene and sesquiterpene emission estimates for the United States. Environ Sci Technol 42:1623–1629CrossRefGoogle Scholar
  37. San José R, Pérez JL, Morant JL, González RM (2008) Elevated PM10 and PM2.5 concentrations in Europe: a model experiment with MM5-CMAQ and WRF-CHEM. In: Air Pollution XVIGoogle Scholar
  38. Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 109:28, 275–28, 293CrossRefGoogle Scholar
  39. Schmidt H, Derognat C, Vautard R, Beekmann M (2001) A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmos Environ 35:6277–6297CrossRefGoogle Scholar
  40. Schürmann GJ, Algieri A, Hedgecock IM, Manna G, Pirrone N, Sprovieri F (2009) Modelling local and synoptic scale influences on ozone concentrations in a topographically complex region of Southern Italy. Atmos Environ 43:4423–4434CrossRefGoogle Scholar
  41. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics, 2nd edn. Wiley, HobokenGoogle Scholar
  42. Skamarock W, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485CrossRefGoogle Scholar
  43. Skamarock WC, Klemp JB, Dudhia J, Gill D, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. Techical report, TN-478+STR, NCARGoogle Scholar
  44. Szopa S, Foret G, Menut L, Cozic A (2009) Impact of large scale circulation on European summer surface ozone and consequences for modelling forecast. Atmos Environ 43:1189–1195CrossRefGoogle Scholar
  45. Tuccella P, Curci G, Visconti G, Bessagnet B, Menut L, Park R (2012) Modeling of gas and aerosol with WRF/CHEM over Europe: evaluation and sensitivity study. J Geophys Res 117:D03303CrossRefGoogle Scholar
  46. Tulet P, Crassier V, Solmon F, Guedalia D, Rosset R (2003) Description of the mesoscale nonhydrostatic chemistry model and application to a transboundary pollution episode between northern France and southern England. J Geophys Res 108(D1):4021CrossRefGoogle Scholar
  47. van Loon M, Roemer MGM, Builtjes PJH, Bessagnet B, Rouil L, Christensen JH, Brandt J, Fagerli H, Tarrasón L, Rodgers I (2004) Model inter-comparison in the framework of the review of the unified EMEP model. Techical report R2004/282, TNOGoogle Scholar
  48. van Loon M, Vautard R, Schaap M, Bergström R, Bessagnet B, Brandt J, Builtjes PJH, Christensen JH, Cuvelier C, Graff A, Jonson JE, Krol M, Langner J, Roberts P, Rouil L, Stern R, Tarrasón L, Thunis P, Vignati E, White L, Wind P (2007) Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos Environ 41:2083–2097CrossRefGoogle Scholar
  49. Vautard R, Honoré C, Beekmann M, Rouil L (2005) Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmos Environ 39:2957–2967CrossRefGoogle Scholar
  50. Vestreng V, Klein H (2002) Emission data reported to UNECE/EMEP: quality assurance and trend analysis & presentation of WebDab techical report, European Environmental Agency, The Norwegian Meteorological Institute, Oslo, Norway, eMEP/MSC-W NOTE 1/2002Google Scholar
  51. Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, Stanelle T (2009) The comprehensive model system COSMO-ART—radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9:8661–8680CrossRefGoogle Scholar
  52. Wild O, Zhu X, Prather MJ (2000) Fast-J: accurate simulation of In- and below-cloud photolysis in tropospheric chemical models. J Atmos Chem 37:245–282CrossRefGoogle Scholar
  53. Zaveri RA, Peters LK (1999) A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res 105:30387–30415CrossRefGoogle Scholar
  54. Zaveri RA, Easter RC, Fast JD, Peters LK (2008) Model for simulating aerosol interactions and chemistry (MOSAIC). J Geophys Res 113:D13204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Mathias Ritter
    • 1
    • 2
    • 3
  • Mathias D. Müller
    • 1
  • Oriol Jorba
    • 4
  • Eberhard Parlow
    • 1
  • L.-J. Sally Liu
    • 2
    • 5
    • 6
  1. 1.Meteorology, Climatology and Remote SensingUniversity of BaselBaselSwitzerland
  2. 2.Environmental Exposure Sciences, Department of Epidemiology and Public HealthSwiss Tropical and Public Health InstituteBaselSwitzerland
  3. 3.BaselSwitzerland
  4. 4.Earth Sciences DepartmentBarcelona Supercomputing CenterBarcelonaSpain
  5. 5.University of BaselBaselSwitzerland
  6. 6.Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations