Meteorology and Atmospheric Physics

, Volume 119, Issue 1–2, pp 91–107 | Cite as

Analysis of the parameterization for the wind-velocity fluctuation standard deviations in the surface layer in low-wind conditions

Original Paper

Abstract

In this work a formulation for the standard deviations of the wind-velocity fluctuations in the atmospheric surface layer is assessed for heterogeneous conditions and with a particular focus on calm wind regime. Starting from a standard formulation used in the devoted literature, its empirical coefficients are estimated by analysing three sets of surface-layer observed data. The possibility of inferring a formula for these coefficients as functions of the wind speed is investigated. The curves of the standard deviations as functions of the stability show different behaviours depending on the set of coefficients used, even if the values of these do not affect the overall statistical agreement between predicted and observed standard deviations. Referring to typical literature values of the coefficients, it is shown that the agreement certainly improves when distinguishing them for two wind-speed regime, low-wind and windy.

References

  1. Anfossi D, Degrazia G, Ferrero E, Gryning SE, Morselli MG, Trini Castelli S (2000) Estimation of the Lagrangian structure function constant C0 from surface layer wind data. Bound-Layer Meteorol 95:249–270CrossRefGoogle Scholar
  2. Anfossi D, Oettl D, Degrazia G, Goulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Bound-Layer Meteorol 114:179–203CrossRefGoogle Scholar
  3. Anfossi D, Alessandrini S, Trini Castelli S, Ferrero E, Oettl D, Degrazia G (2006) Tracer dispersion simulation in low wind speed conditions with a new 2-D Langevin equation system. Atmos Environ 40(37):7234–7245CrossRefGoogle Scholar
  4. Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley-Interscience, New York, p 594Google Scholar
  5. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface Layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  6. Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30:788–794CrossRefGoogle Scholar
  7. Dyer AJ (1974) A review of flux-profile relationships. Bound-Layer Meteorol 7(3):363–372CrossRefGoogle Scholar
  8. Dyer AJ, Bradley EF (1982) An alternative analysis of flux-gradient relationship at the 1976 ITCE. Bound-Layer Meteorol 22:3–19CrossRefGoogle Scholar
  9. Ferrero E, Anfossi D, Richiardone R, Trini Castelli S, Mortarini L, Carretto E, Muraro M, Bande S, Bertoni D (2009) Urban turbulence project—the field experimental campaign. Internal report ISAC-TO/02-2009, October 2009, Torino, Italy, p 37Google Scholar
  10. Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Bound-Layer Meteorol 119(3):431–447CrossRefGoogle Scholar
  11. Foken T, Gryning SE, Costantin J, Heikinheimo M, Wichura B (1995) Classification of the complexity of the meteorological situation in respect to the turbulence measurements of the Nopex-experiment (Uppsala, Sweden, June 1994). In: 9th symposium on meteorological observations and instrumentation, Charlotte, NC, 27–31 Mar 1995. Am Meteorol Soc 482–485Google Scholar
  12. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, p 316Google Scholar
  13. Gryning SE, Batchvarova E (1999) Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer. Agric Forest Meteorol 98–99:159–167CrossRefGoogle Scholar
  14. Halldin S, Gottschalk L, van de Griend AA, Gryning SE, Heikinheimo M, Hogstrom U, Jochum A, Lundin LC (1998) NOPEX—a northern hemisphere climate processes land surface experiment. J Hydrol 213:172–187CrossRefGoogle Scholar
  15. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer. Boundary-Layer Meteorol 42:263–270CrossRefGoogle Scholar
  16. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47(16):1949–1972CrossRefGoogle Scholar
  17. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289Google Scholar
  18. Kaiser A (2009) Messung von Inputparametern für Ausbreitungsmodelle: Strahlungsbilanz und Turbulenzparameter—eine kritische Prüfung. In: Ausbreitungsmodellierung von Luftschadstoffen, Oktober 2009. 1. Österreichischer workshop. Amt der Stmk. Landesregierung, Hrsg. Oettl D., Ber. Nr. LU-10-2010, pp 62–80Google Scholar
  19. Martins CA, Moraes OLL, Acevedo OC, Degrazia GA (2009) Turbulence intensity parameters over a very complex terrain. Bound-Layer Meteorol 133:35–45CrossRefGoogle Scholar
  20. McMillen R (1988) An Eddy correlation technique with extended applicability to non-simple terrain. Bound-Layer Meteorol 43:231–245CrossRefGoogle Scholar
  21. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, Da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112CrossRefGoogle Scholar
  22. Öttl D, Almbauer RA, Sturm PJ (2001) A new method to estimate diffusion in stable, low wind conditions. J Appl Meteorol 40:259–268CrossRefGoogle Scholar
  23. Öttl D, Goulart A, Degrazia G, Anfossi D (2005) A new hypothesis on meandering atmospheric flows in low wind speed conditions. Atmos Environ 39:1739–1748Google Scholar
  24. Panofsky H, Dutton JA (1984) Atmospheric turbulence: models and methods for engineers and scientists. Wiley, New York, p 397Google Scholar
  25. Panofsky HA, McCormick RA (1960) The spectrum of vertical velocity near the surface. Q J R Meteorol Soc 86:495–503CrossRefGoogle Scholar
  26. Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Layer Meteorol 11(3):355–361CrossRefGoogle Scholar
  27. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:1941–1990CrossRefGoogle Scholar
  28. Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, Englewood Cliffs/New Jersey, p 317Google Scholar
  29. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666Google Scholar
  30. Thomsen A, Barring L, Gryning SE, Sogaard H, Thorgeirsson H (1994) Data report for the Nopex Tisby site—concentrated field effort #1, May 27–June 23, 1994Google Scholar
  31. Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2012). Experimental investigation of the surface layer in a suburban area in low wind conditions. Part I: stability and surface roughness. Q J R Meteorol Soc (under review)Google Scholar
  32. Wilson JD (2008) Monin–Obukhov functions for standard deviations of velocity. Bound-Layer Meteorol 129:353–369CrossRefGoogle Scholar
  33. Wingaard JC, Coté OR (1971) The budget of turbulent kinetic energy and temperature variance in the atmospheric surface-layer. J Atmos Sci 28:190–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Institute of Atmospheric Sciences and Climate, CNR-ISACTurinItaly
  2. 2.Department of PhysicsUniversity of TorinoTurinItaly

Personalised recommendations