Meteorology and Atmospheric Physics

, Volume 118, Issue 3–4, pp 199–214

Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea

Original Paper

Abstract

This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  2. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment: part I. J Atmos Sci 31:674–701CrossRefGoogle Scholar
  3. DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC (2010) Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci USA 107:11217–11222CrossRefGoogle Scholar
  4. Donelan MA, Haus BK, Reul N, Plant WJ, Stiassine M, Graber HC, Brown OB, Saltzman ES (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306. doi:10.1029/2004GL019460 CrossRefGoogle Scholar
  5. Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  6. Fan J, Zhang R, Li G, Tao W-K, Li X (2007) Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. J Geophys Res 112:D04201. doi:10.1029/2006JD007688 CrossRefGoogle Scholar
  7. Givati A, Rosenfeld D (2004) Quantifying precipitation suppression due to air pollution. J Appl Meteorol 43:1038–1056CrossRefGoogle Scholar
  8. Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26:520–533CrossRefGoogle Scholar
  9. Hong S-Y (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteorol Soc 136:1481–1496CrossRefGoogle Scholar
  10. Hong S-Y, Lee J-W (2009) Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos Res 93:818–831CrossRefGoogle Scholar
  11. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  12. Hong S-Y, Lim K-SS, Lee Y-H, Ha J-C, Kim H-W, Ham S-J (2010) Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv Meteorol 2010:707253. doi:10.1155/2010/707253 Google Scholar
  13. Juang H-MH, Hong S-Y (2010) Forward semi-lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Mon Weather Rev 138:1778–1791CrossRefGoogle Scholar
  14. Khain AP (2009) Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ Res Lett 4:015004. doi:10.1088/1748-9326/4/1/015004 CrossRefGoogle Scholar
  15. Khain A, Lynn B (2009) Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecasting model with spectral bin microphysics. J Geophys Res 114:D19209. doi:10.1029/2009JD011827 CrossRefGoogle Scholar
  16. Khain A, Pokrovsky A, Pinsky M, Seifert A, Phillips V (2004) Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J Atmos Sci 61:2963–2982CrossRefGoogle Scholar
  17. Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of convective clouds. Q J R Meteorol Soc 131:2639–2663CrossRefGoogle Scholar
  18. Khain A, Cohen N, Lynn B, Pokrovsky A (2008) Possible aerosol effects on lightning activity and structure of hurricanes. J Atmos Sci 65:3652–3677CrossRefGoogle Scholar
  19. Lee SS (2011) Aerosols, clouds and climate. Nat Geosci 4:826–827CrossRefGoogle Scholar
  20. Lee SS, Donner LJ, Phillips VTJ, Ming Y (2008) The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J Geophys Res 113:D16202. doi:10.1029/2007JD009224 CrossRefGoogle Scholar
  21. Lim K-SS, Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612CrossRefGoogle Scholar
  22. Lim K-SS, Hong S-Y, Yum SS, Dudhia J, Klemp JB (2011) Aerosol effects on the development of a supercell storm in a double-moment bulk-cloud microphysics scheme. J Geophys Res 116:D02204. doi:10.1029/2010JD014128 CrossRefGoogle Scholar
  23. Lynn B, Khain A, Rosenfeld D, Woodley WL (2007) Effects of aerosols on precipitation from orographic clouds. J Geophys Res 112:D10225. doi:10.1029/2006JD007537 CrossRefGoogle Scholar
  24. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(14):16663–16682CrossRefGoogle Scholar
  25. Noppel H, Pokrovsky A, Lynn B, Khain AP, Beheng KD (2010) A spatial shift of precipitation from the sea to the land caused by introducing submicron soluble aerosols: numerical modeling. J Geophys Res 115:D18212. doi:10.1029/2009JD012645 CrossRefGoogle Scholar
  26. Phillips VTJ, Donner LJ (2007) Cloud microphysics, radiation, and vertical velocities in two- and three-dimensional simulations of deep convection. Q J R Meteorol Soc 133:3011–3033Google Scholar
  27. Phillips VTJ, Donner LJ, Garner S (2007) Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J Atmos Sci 64:738–761CrossRefGoogle Scholar
  28. Seifert A, Beheng KD (2006a) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: model description. Meteorol Atmos Phys 92:45–66CrossRefGoogle Scholar
  29. Seifert A, Beheng KD (2006b) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part: maritime vs. continental deep convective storms. Meteorol Atmos Phys 92:67–82CrossRefGoogle Scholar
  30. Seifert A, Khain A, Pokrovsky A, Beheng KD (2006) A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos Res 80:46–66CrossRefGoogle Scholar
  31. Seifert A, Köhler C, Beheng KD (2011) Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos Chem Phys 12:709–725. doi:10.5194/acp-12-709-2012 CrossRefGoogle Scholar
  32. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the Advanced Research WRF Version 3: NCAR/TN-475+STR, NCAR technical note. NCAR, Boulder, p 88Google Scholar
  33. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–661CrossRefGoogle Scholar
  34. Tao W-K, Li X, Khain A, Matsui T, Lang S, Simpson J (2007) Role of atmospheric aerosol concentration on deep convective precipitation: cloud-resolving model simulations. J Geophys Res 112:D24S18. doi:10.1029/2007JD008728 CrossRefGoogle Scholar
  35. Tao W-K, Chen J-P, Li Z, Wang C, Zhang C (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50:2011RG000369CrossRefGoogle Scholar
  36. Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115CrossRefGoogle Scholar
  37. Xue H, Feingold G, Stevens B (2008) Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J Atmos Sci 65:392–406CrossRefGoogle Scholar
  38. Yum SS, Hudson JG (2002) Maritime/continental microphysical contrasts in stratus. Tellus 54:61–73CrossRefGoogle Scholar
  39. Yum SS, Hudson JG, Song KY, Choi B-C (2005) Springtime cloud condensation nuclei concentrations on the west coast of Korea. Geophys Res Lett 32:L09814. doi:10.1029/2005GL022641 CrossRefGoogle Scholar
  40. Zeng X, Beljaars A (2005) A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys Res Lett 32:L14605. doi:10.1029/2005GL023030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of Atmospheric Sciences and Global Environment Laboratory, College of SciencesYonsei UniversitySeoulKorea

Personalised recommendations