A modeling study of an Antarctica polynya event

Original Paper

Abstract

An event of polynya at Terra Nova Bay (TNB), occurring from 15 July to 17 July 2006, is simulated by a recent version of the mesoscale Eta model. Simulation results and observational data describe the surface conditions during the period. The spatial and temporal structure of the atmospheric boundary layer in response to the warm area of the polynya is also investigated. Numerical experiments show that the latter influences significantly the wind intensity, the temperature and the specific humidity of the air over Terra Nova Bay. The significant heating of the low atmosphere results in a three-dimensional anomaly in the baric field, which extends far in the Ross Sea, embedded in the complex pressure field obtained by the Eta model also without taking into account the polynya. A turbulent kinetic energy plume, indicating turbulent mixing, and an increased vertical diffusion of horizontal momentum are also simulated over the polynya. The downward flux of high momentum air and the modified pressure gradient force change the wind speed at low level over TNB.

Notes

Acknowledgments

A special thanks to Prof. Fedor Mesinger for the greatly appreciated suggestions and to have made available the version “sloping steps” of the model Eta and several other routines. The author thanks the two anonymous reviewers whose useful comments have enabled improvements to the manuscript. The author is grateful to: the Automatic Weather Station Program at the Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin-Madison (Matthew Lazzara, NSF grant number ANT-0944018) (http://uwamrc.ssec.wisc.edu/) for providing AWS observations; the European Centre for Medium Range Weather Forecasts (ECMWF) for providing analyses data; the Programma Nazionale di Ricerche in Antartide (P.N.R.A.), Osservatorio Meteo-Climatologico (http://www.climantartide.it) for providing AWS observations. This study was supported by P.N.R.A., the Italian National Programme for Antarctic Research, under the Projects: “Turbulent fluxes at the surface in katabatic wind events on the Nansen Ice Sheet in Terra Nova Bay area” and “The Terra Nova Bay polynya: its integrate and innovative study using in situ observations, remote sensing, numerical and laboratory experiments”.

References

  1. Ackley SF (1981) A review of sea-ice weather relationship in the Southern Hemisphere. In: Allison I (ed) Sea level, Ice, Climate Change Proceedings of Canberra Symposium, December 1979. International Association of Hydrological Sciences Publication, vol 13, pp 1127–159Google Scholar
  2. Adolphs U, Wendler G (1995) A pilot study on the interactions between katabatic winds and polynyas at the Adelie Coast, eastern Antarctica. Antarctic Sci 7(3):307–314CrossRefGoogle Scholar
  3. Altshuler E, Fennessy M, Shukla J, Juang H, Rogers E, Mitchell K, Kanamitsu M (2002) Seasonal simulations over North America with a GCM and three regional models. COLA Tech Rpt 115:66Google Scholar
  4. Assmann KM, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dyn 55:68–87CrossRefGoogle Scholar
  5. Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX and Arctic air-mass data sets. Q J R Meteorol Soc 112:693–709Google Scholar
  6. Biggs NRT, Morales Maqueda MA, Willmott AJ (2000) Polynya flux model solutions incorporating a parameterisation for the collection thickness of consolidated new ice. J Fluid Mech 408:179–204CrossRefGoogle Scholar
  7. Black T (1994) The new NMC mesoscale Eta Model: description and forecast examples. Weather Forecast 9:265–278CrossRefGoogle Scholar
  8. Bromwich DH, Carrasco JF, Stearns CR (1992) Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon Weather Rev 120:1940–1949CrossRefGoogle Scholar
  9. Bromwich DH, Carrasco JF, Zhong l, Tzeng RY (1993) Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Ice Shelf, Antarctica. J Geophys Res 98(D7):13045–13062CrossRefGoogle Scholar
  10. Bromwich DH, Du Y, Parish TR (1994) Numerical simulation of winter katabatic winds from West Antarctica Crossing Siple Coast and the Ross Ice Shelf. Mon Weather Rev 122:1417–1435CrossRefGoogle Scholar
  11. Bromwich DH, Monaghan AJ, Powers JG, Cassano JJ, Wei H, Kuo Y, Pellegrini A (2003) Antarctic mesoscale prediction system (AMPS): a case study from the 2000–01 field season. Mon Weather Rev 131:421–435Google Scholar
  12. Buffoni G, Cappelletti A, Picco P (2002) An investigation of thermohaline circulation in Terra Nova Bay polynya. Antarctic Sci 14:83–92CrossRefGoogle Scholar
  13. Cesini D, Morelli S, Parmiggiani F (2004) Analysis of an intense bora event in the Adriatic area. Nat Hazard Earth Syst Sci 4:323–337CrossRefGoogle Scholar
  14. Charnock H (1955) Wind stress on a water surface. Q J R Meteor Soc 81:639–640CrossRefGoogle Scholar
  15. Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan QY, Ek M, Betts A (1996) Modeling of the land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res 101(D3):7251–7268Google Scholar
  16. Chou SC, Bustamante JF, Gomes JL (2005) Evaluation of seasonal precipitation forecasts over South America using Eta model. Nonlinear Proc Geophys 12:537–555CrossRefGoogle Scholar
  17. Dare RA, Atkinson BW (2000) Atmospheric response to spatial variations in concentration and size of polynyas in the Southern Ocean Sea-Ice Zone. Boundary Layer Meteorol 94:65–88CrossRefGoogle Scholar
  18. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108:8851. doi:10.1029/2002/D003296 Google Scholar
  19. Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation: A new method for radiative transfer calculations. J Atmos Sci 32:1475–1488CrossRefGoogle Scholar
  20. Ferrier BS, Jin Y, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. In: 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction, San Antonio, TX, Am Meteor Soc, pp 280–283Google Scholar
  21. Fiedler EK, Lachlan-Cope TA, Renfrew IA, King JC (2010) Convective heat transfer over thin ice covered coastal polynyas. J Geophys Res 115:C10051. doi:10.1029/2009JC005797
  22. Gallée H (1997) Air-sea interactions over Terra Nova Bay during winter: Simulation with a coupled atmosphere-polynya model. J Geophys Res 102(D12):13835–13849CrossRefGoogle Scholar
  23. Georgelin M, Richard E, Petitdidier M, Druilhet A (1994) Impact of subgrid-scale orography parameterization on the simulation of orographic flows. Mon Weather Rev 122:1509–1522CrossRefGoogle Scholar
  24. Hauser A, Lythe M, Wendler G (2002) Sea-ice conditions in the Ross Sea during Spring 1996 as observed on SAR and AVHRR Imagery. Atmos Ocean 40(3):281–292CrossRefGoogle Scholar
  25. Hebbinghaus H, Schlunzen H, Dierer S (2007) Sensitivity studies on vortex development over a polynya. Theor Appl Climatol 88:1–16CrossRefGoogle Scholar
  26. Heinemann G (2003) Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. In: The Global Atmosphere and Ocean System, vol 9, no. 4, Taylor & Francis Ltd, pp 169–201Google Scholar
  27. Janjic ZI (1994) The step mountain coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  28. Janjic ZI (1996) The Mellor Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model. In: Atmospheric and oceanic modelling. WMO, Geneva, CAS/WGNE, 4.14-4.15Google Scholar
  29. Janjic ZI (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pGoogle Scholar
  30. Katsafados P, Papadopoulos A, Kallos G (2005) Regional atmospheric response to tropical Pacific SST perturbations. Geophys Res Lett 32:L04806. doi:10.1029/2004GL021828 CrossRefGoogle Scholar
  31. Kern S, Spreen G, Kaleschke L, De La Rosa S, Heygster G (2007) Polynya Signature Simulation Method polynya area in comparison to AMSR-E 89 GHz sea-ice concentrations in the Ross Sea and off the Adélie Coast, Antarctica, for 2002–05: first results. Ann Glaciol 46:409–418CrossRefGoogle Scholar
  32. Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104(D16):19569–19584CrossRefGoogle Scholar
  33. Kurtz DD, Bromwich DH (1983) Satellite observed behaviour of the Terra Nova Bay polynya. J Geophys Res 88:9717–9722CrossRefGoogle Scholar
  34. Kurtz DD, Bromwich DH (1985) A recurring atmospherically forced polynya in Terra Nova Bay. In: Jacobs SS (ed) Oceanology of the Antarctic Continental Shelf. Antarctic research series 43. AGU, Washington, DC, pp 177–201CrossRefGoogle Scholar
  35. Kwork R, Comiso JC, Martin S, Drucker R (2007) Ross Sea polynyas: response of ice concentration retrievals to large areas of thin ice. J Geophys Res 112:C12012. doi:10.1029/2006JC003967
  36. Lacis AA, Hansen JE (1974) A parameterization of the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133CrossRefGoogle Scholar
  37. Lobocki L (1993) A procedure for the derivation of surface-layer bulk relationship from simplified second-order closure models. J Appl Meteor 32:126–138CrossRefGoogle Scholar
  38. Marsland SJ, Bindoff NL, Williams GD, Budd WF (2004) Modeling water mass formation in the Mertz Glacier Polynya and Adelie Depression, East Antarctica. J Geophys Res 109(C11003): 1–18. doi:10.1029/2004JC002441 Google Scholar
  39. Martin S (2001) Polynyas. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of Ocean Sciences. Elsevier, New York, pp 2241–2247CrossRefGoogle Scholar
  40. Mauritsen T, Svensson G, Grisogono B (2005) Wave flow simulations over Artic leads. Boundary Layer Meteorol 117:259–273CrossRefGoogle Scholar
  41. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875CrossRefGoogle Scholar
  42. Mesinger F (2005) Eta Model at NCEP: Challenges overcome and lessons learned. Lecture notes, Workshop on “Design and Use of Regional Weather Prediction Models”. The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 11–19 April 2005, 42 p. http://agenda.ictp.trieste.it/agenda/current/askArchive.php?base=agenda&categ=a04186&id=a04186s262t1/lecture_notes
  43. Mesinger F (2010) Several PBL parameterization lessons arrived at running an NWP model. In: International Conference on Planetary Boundary Layer and Climate Change, IOP Publishing, IOP Conference Series: Earth and Environmental Science 13. doi:10.1088/1755-1315/13/1/012005 (http://iopscience.iop.org/1755-1315/13/1/012005)
  44. Mesinger F, Jovic D (2002) The Eta slope adjustment: Contender for an optimal steepening in a piecewise-linear advection scheme? Comparison tests. NCEP Office Note 439, 29 p. http://www.emc.ncep.noaa.gov/officenotes
  45. Mesinger F, Jovic D (2004) Vertical coordinate, QPF, and resolution. The 2004 Workshop on “the Solution of Partial Differential Equations on the Sphere”, Frontier Res, ppt in CD-ROM, vol. 2. Center for Global Change (FRCGC), Yokohama, Japan, 20–23 July 2004. http://www.jamstec.go.jp/frcgc/eng/workshop/pde2004/agenda.html
  46. Mesinger F, Lobocki L (1991) Sensitivity to the parameterization of surface fluxes in NMC’s eta model. In: 9th Conference on: Numerical Weather Prediction, Denver, CO, Am Meteor Soc, pp 213–216Google Scholar
  47. Mesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate: model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon Weather Rev 116:1493–1518CrossRefGoogle Scholar
  48. Mesinger F, Wobus RL, Baldwin ME (1996) Parameterization of form drag in the Eta Model at the National Centers for Environmental Prediction. In: 11th Conference on Numerical Weather Prediction, Norfolk, VA, Am Meteorol Soc, pp 324–326Google Scholar
  49. Mesinger F, Jovic D, Chou SC, Gomes JL, Bustamante JF (2006) Wind forecast around the andes using the sloping discretization of the Eta coordinate. In: Proceedings of 8 ICSHMO, Foz do Iguacu, Brazil, 24–28 April 2006, INPE, pp 1837–1848Google Scholar
  50. Moore GWK, Alverson K, Renfrew IA (2002) A Reconstruction of the Air–Sea Interaction Associated with the Weddel Polynya. J Phys Oceanogr 32:1685–1698CrossRefGoogle Scholar
  51. Morales Maqueda MA, Biggs NRT, Willmott AJ (2004) Polynyas and climate: an overview of observations and modelling. Rev Geophys 42:RG1004. doi:10.1029/2002RG000116
  52. Morelli S, Parmiggiani F (2011) Surface–atmosphere interactions during a polynya event at Terra Nova Bay (Antarctica). In: Proceedings of ESA-iLEAPS-EGU Joint Conference on Earth Observation for Land-Atmosphere Interaction Science. Frascati (Rome), Italy 3–5 November 2010, ESA SP-688, H. Lacoste, ESA Communication Editor, ESA/ESTEC Noordwijk, The NetherlandsGoogle Scholar
  53. Parish TR, Bromwich DH (1989) Instrumental aircraft observations of the katabatic wind regime near Terra Nova Bay. Mon Weather Rev 117:1570–1585CrossRefGoogle Scholar
  54. Parish TR, Cassano JJ (2003) The role of katabatic winds in the Antarctic surface wind regime. Mon Weather Rev 131:317–333CrossRefGoogle Scholar
  55. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor 9:857–861CrossRefGoogle Scholar
  56. Pease CH (1987) The size of Wind-Driven Coastal Polynyas. J Geophys Res 92:7049–7059CrossRefGoogle Scholar
  57. Pielke RA (2002) Mesoscale meteorological modeling. International Geophysics Series, vol 78, 2nd edn. Academic Press, 676 pGoogle Scholar
  58. Roberts A, Allison I, Lytle VI (2001) Sensible and latent-heat-fluxes estimates over the Mertz Glacier polynya, East Antarctica, from in flight measurements. Ann Glaciol 33:377–384CrossRefGoogle Scholar
  59. Rogers E, Black TL, Deaven DG, DiMego GJ, Zhao Q, Baldwin M, Junker NW, Lin Y (1996) Changes to the operational “early” Eta analysis/forecast system at the National Centers for Environmental Prediction. Weather Forecast 11:391–413CrossRefGoogle Scholar
  60. Schwarzkopf MD, Fels SB (1991) The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J Geophys Res 96:9075–9096CrossRefGoogle Scholar
  61. Stortini M, Morelli S, Marchesi S (2000) Modeling study of mesoscale cyclogenesis over Ross Sea, Antarctica, on February 18, 1988. Il Nuovo Cimento 23C(2):147–163Google Scholar
  62. Trini Castelli S, Morelli S, Anfossi D, Carvalho J, Zauli Sajani S (2004) Intercomparison of two models, ETA and RAMS, with TRACT field campaign data. Environ Fluid Mech 4:157–196CrossRefGoogle Scholar
  63. Van Woert ML (1999) Wintertime dynamics of the Terra Nova bay polynya. J Geophys Res 104:7753–7769CrossRefGoogle Scholar
  64. Veihelmann B, Olesen FS, Kottmeier C (2001) Sea ice surface temperature in the Weddel Sea (Antarctica), from drifting buoy and AVHRR data. Cold Regions Sci technol 33:19–27CrossRefGoogle Scholar
  65. Walkington I, Morales Maqueda MA, Willmott AJ (2007) A robust and computationally efficient model of a two-dimensional coastal polynya. Ocean Model 17(2):140–152CrossRefGoogle Scholar
  66. Williams WJ, Carmack EC, Ingram RG (2007) Physical Oceanography of Polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas: windows to the world. Elsevier Oceanography Series, Amsterdam 74:55–85Google Scholar
  67. Willmott AJ, Morales Maqueda MA, Darby MS (1997) A model for the influence of wind and oceanic currents on the size of a steady-state latent heat Coastal Polynya. J Phys Oceanogr 27:2256–2275CrossRefGoogle Scholar
  68. Zilitinkevich SS (1995) Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows. In: Power H, Moussiopoulos N, Brebbia CA (eds) Air Pollution III—vol. 1 Air pollution theory and simulation. Computational Mechanics Publications, Southampton, pp 53–60Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations