Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil

  • Marcelo Zeri
  • José Francisco Oliveira-Júnior
  • Gustavo Bastos Lyra
Original Paper

Abstract

Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant’s concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1–8 days, time scales that are associated with the passage of weather events, such as cold fronts.

Notes

Acknowledgments

We thank the Coordenadoria de Despoluição dos Recursos Ambientais da Secretaria Municipal de Meio Ambiente do Rio de Janeiro for the pollutants data and the Fundação Instituto de Geotécnica for the São Cristóvão meteorological data.

References

  1. Albuquerque TTA, Lyra GB, Fornaro A, Andrade MF (2006) Composição química da água de chuva na Região Metropolitana do Rio de Janeiro. In: XIV Congresso Brasileiro de Meteorologia, Florianópolis, BrazilGoogle Scholar
  2. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303(5662):1337–1342CrossRefGoogle Scholar
  3. Anttila P, Salmi T (2006) Characterizing temporal and spatial patterns of urban PM10 using six years of Finnish monitoring data. Boreal Environ Res 11(6):463–479Google Scholar
  4. Arya SP (1999) Air pollution meteorology and dispersion. Oxford University Press, OxfordGoogle Scholar
  5. Balazina A (2007) Estudo revela poluição elevada em seis capitais. Agência Folha. http://www1.folha.uol.com.br/folha/cotidiano/ult95u330220.shtml. Accessed 23 December 2010
  6. Braga A, Barbosa S, Farhat S, Martins L, Pereira L, Saldiva P, Zanobetti A (2006) The expanding burden of air pollution on health: the case of sickle cell disease. Epidemiology 17(6):S223–S224CrossRefGoogle Scholar
  7. Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Arbex MA, Zanobetti A, Braga ALF (2006) The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114(5):725–729CrossRefGoogle Scholar
  8. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17(1):88–108. doi: 10.1175/1520-0442(2004)017<0088:tsaczi>2.0.co;2 CrossRefGoogle Scholar
  9. Climanálise (2005) Produtos Climanálise INPE/CPTEC. http://wwwcptecinpebr/products/climanalise/. Last accessed 3 March 2011
  10. CONAMA (1990) CONAMA—Conselho Nacional Do Meio Ambiente—resolution #3 of 28 June 1990. Diário Oficial da UniãoGoogle Scholar
  11. Daubechies I (1992) Ten lectures on wavelets, vol 61. CBMS-NSF regional conference series in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia, p 377Google Scholar
  12. De Leon AP, Anderson HR, Bland JM, Strachan DP, Bower J (1996) Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987–88 and 1991–92. J Epidemiol Community Health 50:S63–S70CrossRefGoogle Scholar
  13. Demuzere M, Trigo RM, de Arellano JVG, van Lipzig NPM (2009) The impact of weather and atmospheric circulation on O-3 and PM10 levels at a rural mid-latitude site. Atmos Chem Phys 9(8):2695–2714CrossRefGoogle Scholar
  14. Elminir HK (2007) Relative influence of air pollutants and weather conditions on solar radiation—part 1: relationship of air pollutants with weather conditions. Meteorol Atmos Phys 96(3–4):245–256CrossRefGoogle Scholar
  15. Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395–457CrossRefGoogle Scholar
  16. Ferreira MS (2005) Simulação do Transporte de Poluentes Atmosféricos na Bacia Área III da Região Metropolitana do Rio de Janeiro Via o Modelo AERMOD. Universidade Federal do Rio de Janeiro—COPPE, Rio de JaneiroGoogle Scholar
  17. Gonçalves FLT, Carvalho LMV, Conde FC, Latorre M, Saldiva PHN, Braga ALF (2005) The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in Sao Paulo City. Environ Int 31(3):343–349CrossRefGoogle Scholar
  18. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5–6):561–566CrossRefGoogle Scholar
  19. Hales JM (1972) Fundamentals of the theory of gas scavenging by rain. Atmos Environ 6(9):635–636, IN631, 637–659. doi: 10.1016/0004-6981(72)90023-6
  20. Krusche N, Machado BS (2000) Caracterização das Estruturas Coerentes do Tipo Rampa na Camada Limite Superficial Convectiva em Candiota, RS. Revista Brasileira de Meteorologia 15(2):113–125Google Scholar
  21. Lara LL, Artaxo P, Martinelli LA, Camargo PB, Victoria RL, Ferraz ESB (2005) Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmos Environ 39(26):4627–4637. doi: 10.1016/j.atmosenv.2005.04.026 CrossRefGoogle Scholar
  22. Liebmann B, Kiladis GN, Marengo JA, Ambrizzi TR, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic Convergence Zone. J Clim 12(7):1877–1891. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  23. Muza MN, Carvalho LMV, Jones C, Liebmann B (2009) Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical atlantic during austral summer. J Clim 22(7):1682–1699. doi: 10.1175/2008jcli2257.1 CrossRefGoogle Scholar
  24. Oliveira Júnior JF (2008) Estudo da Camada Limite Atmosférica na Região de Angra dos Reis Através do Modelo de Mesoescala MM5 e Dados Observacionais. Ph.D., Universidade Federal do Rio de Janeiro—COPPE, Rio de JaneiroGoogle Scholar
  25. Pereira L, Braga A, Morimoto T, Braga L, Andre PA, Saldiva P (2009) Association between low birthweight and air pollution in an industrial Brazilian city. Epidemiology 20(6):S82–S82Google Scholar
  26. Sá LDD, Sambatti SBM, Galvao GP (1998) Applying the Morlet wavelet in a study of variability of the level of Paraguay River at Ladario, MS. Pesqu Agropecu Bras 33:1775–1785Google Scholar
  27. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N Engl J Med 343(24):1742–1749CrossRefGoogle Scholar
  28. Sánchez-Ccoyllo OR, Andrade MF (2002) The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo, Brazil. Environ Pollut 116(2):257–263CrossRefGoogle Scholar
  29. Schwartz J (1996) Air pollution and hospital admissions for respiratory disease. Epidemiology 7(1):20–28CrossRefGoogle Scholar
  30. Seinfield J, Pandis S (1997) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New YorkGoogle Scholar
  31. Shukla JB, Misra AK, Sundar S, Naresh R (2008) Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math Comput Model 48(5–6):832–844. doi: 10.1016/j.mcm.2007.10.016 CrossRefGoogle Scholar
  32. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtGoogle Scholar
  33. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  34. Zeri M, Sá L (2010) Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the Amazon forest. Bound Layer Meteorol 138(3):413–431. doi: 10.1007/s10546-010-9563-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Marcelo Zeri
    • 1
  • José Francisco Oliveira-Júnior
    • 2
  • Gustavo Bastos Lyra
    • 3
  1. 1.Energy Biosciences InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical EngineeringCOPPE, Federal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Federal Rural University of Rio de JaneiroSeropédicaBrazil

Personalised recommendations