Objective identification of synoptic meteorological patterns favouring African dust intrusions into the marine boundary layer of the subtropical eastern north Atlantic region

  • S. Alonso-PérezEmail author
  • E. Cuevas
  • X. Querol
Original Paper


Synoptic geopotential height anomalies patterns favouring African dust outbreaks into the marine boundary layer (MBL) of the subtropical Eastern North Atlantic Region (SENAR) were objectively identified. The proportion of the total variance explained by each of these patterns was also calculated. Dust intrusions into the MBL of the SENAR were identified using total suspended particles (TSP) data at a rural background station in Tenerife Island (El Rio station, ER). Geopotential height anomalies at 1,000, 850, 700 and 500 hPa, respectively, in days of African dust intrusion in the period 1998–2003 were grouped in monthly sets. Two different but complementary methods (K-means and Principal Components) were applied to daily geopotential height anomalies for each month and for each pressure level in case of African dust intrusion. Three principal geopotential height anomalies patterns were found. Type I consist on a high-pressure system over Europe that affects North Africa, occasionally giving rise to a ridge. The Canary Islands are in the south-west flank of this high-pressure system. This pattern is dominant throughout the whole year. Type II and type III patterns consist on a low located to the northeast and southeast of the Canary Islands, respectively, coupled with a high over the Mediterranean basin and/or North Africa. Two case analyses are presented, as well as a systematic validation of the meteorological pattern classification for all dust intrusions detected at ER station within the period 2004–2007.


Geopotential Height Canary Island Total Suspended Particle Marine Boundary Layer Geopotential Height Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the UNELCO/ENDESA Power Company and the General Directorate of Industry and Energy of the Canary Government for the El Río station PST data series, Dr. Sergio Rodríguez (Huelva University/Izaña Atmospheric Research Center) for the Izaña station PM10 series and the National Centers for Environmental Prediction—National Center for Atmospheric Research (NCEP/NCAR) Reanalysis Project for the reanalysis data. The authors would also like to express their gratitude to NOAA Air Resource Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website ( used in this publication and Josep Coca (Las Palmas de Gran Canaria University) for the Seawifs images. Silvia Alonso-Perez was financed by a joint grant from the Environment Ministry of Spain and the Spanish Research Council (CSIC) during the present work.


  1. Alastuey A, Querol X, Castillo S, Escudero M, Avila A, Cuevas E, Torres C, Romero PM, Exposito F, Garcia O, Diaz JP, Dingenen RV, Putaud JP (2005) Characterisation of TSP and PM2.5 at Izana and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002). Atmos Environ 39(26):4715–4728CrossRefGoogle Scholar
  2. Alonso-Pérez S, Cuevas E, Querol X, Viana M, Guerra JC (2007) Impact of the Saharan dust outbreaks on the ambient levels of total suspended particle (TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North Atlantic Ocean. Atmos Environ 41/40:9468–9480. doi: 10.1016/j.atmosenv.2007.08.049
  3. Alonso-Pérez S, Cuevas E, Pérez C, Querol X, Baldasano JM, Draxler R, de Bustos JJ (2011) Trend changes of African airmass intrusions in the marine boundary layer over the subtropical Eastern North Atlantic region in winter. Tellus 63B, 255:265Google Scholar
  4. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  5. Bergametti G, Gomes L, Coudé-Gaussen G, Rognon P, Coustumer MNL (1989) African dust observed over Canary Islands: source regions identification and transport pattern for some summer situation. J Geophys Res 94:14855–14864CrossRefGoogle Scholar
  6. Brooks N, Legrand M (2000) Dust variability over northern Africa and rainfall in the Sahel. In: McLaren SJ, Kniveton D (eds) Linking climate change to land surface change. Kluwer Academic Publishers, Norwell, pp 1–25Google Scholar
  7. Bustos JJ, Cuevas E, Marrero C, Alonso S (1998) Caracterización de las masas de aire en la troposfera libre y en la capa de mezcla en Canarias. Proceedings of IX Asamblea de Geodesia y Geofísica 9:13, Almería, SpainGoogle Scholar
  8. Carlson TN, Prospero JM (1972) The large scale movement of Saharan air outbreaks over the northern ecuatorial Atlantic. J Appl Meteorol 11:283–297CrossRefGoogle Scholar
  9. Chiapello I, Bergametti G, Gomes L, Chatenet B (1995) An additional low layer transport of Sahelian and Saharan dust over the North-Eastern Tropical Atlantic. Geophys Res Lett 22(23):3191–3194CrossRefGoogle Scholar
  10. Chiapello I, Bergametti G, Chatenet B, Bousquet P, Dulac F, Santos Soares E (1997) Origins of African dust transported over the northeastern tropical Atlantic. J Geophys Res 102(12):13701–13709CrossRefGoogle Scholar
  11. Chung C, Nigam S (1999) Weighting of geophysical data in principal component analysis. J Geophys Res 104(14):16925–16928CrossRefGoogle Scholar
  12. Cliff N (1988) The eigenvalues-greater-than1 rule and the reliability of components. Psychol Bull 103:276–279CrossRefGoogle Scholar
  13. Consejo Económico y Social de Canarias (1999) Informe anual 1999 del Consejo Económico y Social sobre la situación económica, social y laboral de Canarias en 1998. Accessed 8 June 2011
  14. Cuevas E (1995) Estudio del comportamiento del ozono troposférico en el observatorio de Izaña y su relación con la dinámica atmosférica. Ph.D. Thesis. Facultad de Ciencias Físicas, Universidad Complutense de MadridGoogle Scholar
  15. Darwin C (1846) An account of this fine dust which often falls on vessels in the Atlantic Ocean. Q J Geol Soc London 2:26–30CrossRefGoogle Scholar
  16. Delgado, JD, García OE, Díaz AM, Díaz JP, Expósito FJ, Cuevas E, Querol X, Alastuey A, Castillo S (2010) Origin and SEM analysis of aerosols in the high mountain of Tenerife (Canary Islands). Natural Science 2, 10, 1119–1129. doi: 10.4236/ns.2010.210139
  17. Ding C, He X (2004) K-means clustering via principal component analysis. Proceedings of International Conference on Machine Learning and Application (ICML 2004), 225–232, Alberta, CanadaGoogle Scholar
  18. Doherty OM, Riemer N, Hameed S (2008) Saharan mineral dust transport into the Caribbean: observed atmospheric controls and trends. J Geophys Res 113:D07211. doi: 10.1029/2007JD009171 CrossRefGoogle Scholar
  19. Dorta P (2001) Aproximación a la influencia de las advecciones de aire sahariano en la propagación de los incendios forestales en la provincia de Santa Cruz de Tenerife. Proceedings of the XVII Congreso de Geógrafos Españoles, 158–162, Universidad de Oviedo, SpainGoogle Scholar
  20. Dorta P, Gelado MD, Hernández JJ, Cardona P, Collado C, Mendoza S, Rodríguez MJ, Siruela V, Torres ME (2005) Frecuencia, estacionalidad y tendencias de las advecciones de aire sahariano en Canarias (1976–2003). Investigaciones Geográficas 38: 23–45. Instituto Universitario de Geografía. Universidad de AlicanteGoogle Scholar
  21. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access Via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD Website. Accessed 8 June 2011
  22. Escudero M, Castillo S, Querol X, Ávila A, Alarcón M, Viana MM, Alastuey A, Cuevas E, Rodríguez S (2005) Wet and dry African dust episodes over Eastern Spain. J Geophys Res 110 (D18S08), 10.1029. doi: 10.1029/2004JD004731
  23. Font I (1956) El tiempo atmosférico en las islas Canarias. Servicio Nacional de Meteorología, MadridGoogle Scholar
  24. Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179–204CrossRefGoogle Scholar
  25. Gutiérrez JM, Cano R, Cofiño AS, Sordo CM (2004) Redes Probabilísticas y Neuronales en las Ciencias Atmosféricas. Serie Monografías. Dirección General del Instituto Nacional de Meteorología. Ministerio de Medio Ambiente, MadridGoogle Scholar
  26. Horn JL (1965) A rationale and a test for the number of factors in factor analysis. Psychometrika 30:179–185CrossRefGoogle Scholar
  27. Huth R (1996) An intercomparison of computer-assisted circulation classification methods. Int J Climatol 16:893–922CrossRefGoogle Scholar
  28. IPCC (2007) Climate change: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York. Accessed 8 June 2011
  29. Jakob C, Tselioudis G (2003) Objetive identification of cloud regimes in the Tropical Western Pacific. Geophys Res Lett 30(21):2082. doi: 10.1029/2003GL018367 CrossRefGoogle Scholar
  30. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151CrossRefGoogle Scholar
  31. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  32. Kassomenos PA, Sindosi AO, Lolis CJ (2003) Seasonal variation of the circulation types occurring over southern Greece: a 50 yr study. Clim Res 24:33–46CrossRefGoogle Scholar
  33. Legrand M, N’Doume C, Jankowiak I (1994) Satellite-derived climatology of the Saharan aerosol. In: Lynch DK (ed) Passive infrared remote sensing of clouds and the atmosphere II, Proceedings of SPIE 2309:127–135Google Scholar
  34. López-Villarrubia E, Ballester F, Iñiguez C, Peral N (2010) Air pollution and mortality in the Canary Islands: a time-series analysis. Environ Health 2010, 9:8Google Scholar
  35. Lorenz, EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology, Statistical Forecast Project Rep. 1, 49 ppGoogle Scholar
  36. Maheras P, Xoplaki E, Davies T, Martin-Vide J, Barriendos M, Alcoforado MJ (1999) Warm and cold monthly anomalies across the Mediterranean basin and their relationship with circulation; 1860–1990. Int J Climatol 19:1697–1715CrossRefGoogle Scholar
  37. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnel JR, Albani S, Doney SC, Bhattacharya A, Curran MAJ, Flanner MG, Hoffman FM, Lawrence DM, Lindsay K, Mayewski PA, Neff J, Rothenberg D, Thomas E, Thornton PE, Zender CS (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys Discuss 10:12585–12628. doi: 10.5194/acpd-10-12585-2010 CrossRefGoogle Scholar
  38. Meloni D, di Sarra A, Monteleone F, Pace G, Piacentino S, Sferlazzo DM (2008) Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa. Atmos Res 88:134–148CrossRefGoogle Scholar
  39. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256CrossRefGoogle Scholar
  40. Morales C (1977) Saharan dust mobilization, transport and deposition. Papers and recommendations from a Workshop held in Gothenbourg, Sweden. 25–28 April 1977. Scope 14. Wiley, New YorkGoogle Scholar
  41. Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J Climate 20:4065–4095. doi: 10.1175/JCLI4175.1 CrossRefGoogle Scholar
  42. Prospero JM (1999a) Long rate transport of mineral dust in the global atmosphere: impact of African dust on the environment of the south-eastern United States. Proceedings of the National Academy of Science USA 96: 3396–3403Google Scholar
  43. Prospero JM (1999b) Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality. J Geophys Res Atmos 104:15917–15927CrossRefGoogle Scholar
  44. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302(7):1024–1027CrossRefGoogle Scholar
  45. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40, 1002. doi: 10.1029/2000RG000095
  46. Querol X, Pey J, Pandolfi M, Alastuey A, Cusack M, Pérez N, Moreno T, Viana M, Mihalopoulos N, Kallos G, Kleanthous S (2009) African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos Environ 43:4266–4277CrossRefGoogle Scholar
  47. Ramos AG, Cuevas E, Pérez C, Baldasano JM, Coca J, Redondo A, Alonso-Pérez S, Bustos JJ, Nickovic S (2009) Short-term changes in the northwest African upwelling system induced by Saharan dust deposition events. IOP Conf. Ser.: Earth Environ Sci 7, 012019 doi: 10.1088/1755-1307/7/1/012019
  48. Riemer N, Doherty OM, Hameed S (2006) On the variability of African dust transport across the Atlantic. Geophys Res Lett 33:L13814. doi: 10.1029/2006GL026163 CrossRefGoogle Scholar
  49. Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Master Thesis, Universidad de La LagunaGoogle Scholar
  50. Rodríguez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Saharan dust contributions to PM10 and TSP levels in Southern and E. Spain. Atmos Environ 35:2433–2447CrossRefGoogle Scholar
  51. Rolph GD (2003) Real-Time Environmental Applications and Display System (READY). NOAA Air Resources Laboratory, Silver Spring, MD Website. Accessed 8 June 2011
  52. Salvador P, Artíñano B, Querol X, Alastuey A (2008) A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. Sci Total Environ 390:495–506CrossRefGoogle Scholar
  53. Torres-Padrón ME, Gelado-Caballero MD, Collado-Sánchez C, Siruela-Matos VF, Cardona-Castellano PJ, Hernández-Brito JJ (2002) Variability of dust inputs to the CANIGO zone. Deep-Sea Res II 49:3455–3464CrossRefGoogle Scholar
  54. Valle S, Weihua L, Qin SJ (1999) Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods. Ind Eng Chem Res 38, 11:4389–4401. ISSN: 0888-5885Google Scholar
  55. Viana M (2003) Niveles, composición y origen del material particulado atmosférico en los sectores Norte y Este de la Península Ibérica y Canarias. Ph.D. Thesis. Consejo Superior de Investigaciones Científicas/Universitat de BarcelonaGoogle Scholar
  56. Viana M, Querol X, Alastuey A, Cuevas E, Rodríguez S (2002) Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos Environ 36:5861–5875CrossRefGoogle Scholar
  57. Wang H, Zhou H, Hang B (2004) Number selection of principal components with optimized process monitoring performance. 43rd IEEE Conference on Decision and Control. 5, 14–17:4726–4731. doi: 10.1109/cdc.2004.1429537
  58. Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-yr SST normals during 1871–2000. J Climate 16(10):1601–1612CrossRefGoogle Scholar
  59. Zwick WR, Velicer WF (1986) A comparison of five rules for determining the number of components to retain. Psychol Bull 99:432–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Izaña Atmospheric Research Center, AEMETSanta Cruz de TenerifeSpain
  2. 2.Institute of Environmental Assessment and Water Research, CSICBarcelonaSpain

Personalised recommendations