Meteorology and Atmospheric Physics

, Volume 112, Issue 1–2, pp 15–27 | Cite as

Initiation of deep convection caused by land-surface inhomogeneities in West Africa: a modelled case study

Original Paper

Abstract

Simulations with the Consortium for Small Scale Modelling model were performed to investigate the impact of land surface inhomogeneities on the initiation of convection. A case from the African Monsoon Multidisciplinary Analysis campaign, 11 June 2006, was selected. On this day, a mesoscale convective system was observed and simulated. The simulation scenarios included a realistic and an increased initial soil moisture distribution as well as a homogeneous soil moisture and texture field. Land use and orography were the same in all runs. Heat and moisture budget calculations were applied to analyse the processes responsible for the evolution of pre-convective atmospheric conditions and convection-triggering thermally induced circulation systems. Convective cells were initiated in all experiments. However, the amount of cells, their origin, evolution, and precipitation amount differed. First shallow clouds were initiated over areas with higher sensible heat fluxes. The evolution of subsequent deep convection was triggered by secondary circulation systems caused by baroclinic conditions generated by clouded and unclouded regions. The further evolution of the precipitation cells strongly depended on convective inhibition in the areas the cells moved into.

References

  1. Baker RD, Lynn BH, Boone A, Tao WK, Simpson J (2001) The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J Hydrometeorol 2:193–211CrossRefGoogle Scholar
  2. Barthlott C, Corsmeier U, Meißner C, Braun F, Kottmeier C (2006) The influence of mesoscale convective systems on triggering convective cells over complex terrain. Atmos Res 81:150–175CrossRefGoogle Scholar
  3. Chaboureau JP, Guichard F, Redelsperger JL, Lafore JP (2004) The role of stability and moisture in the diurnal cycle of convection over land. Q J R Meteorol Soc 130:3105–3117. doi:10.1256/qj.03.132 CrossRefGoogle Scholar
  4. Chong M (2010) The 11 August 2006 squall-line system as observed from MIT Doppler radar during the AMMA SOP. Q J R Meteorol Soc 136(s1):209–226CrossRefGoogle Scholar
  5. Doms G, Förstner J (2004) Development of a kilometer-scale NWP-system: LMK. COSMO Newsl 4:159–167, http://www.cosmo-model.org Google Scholar
  6. Doms G, Schättler U (2002) A description of the non-hydrostatic regional LM-Model. Part I. Dynamics and numerics. Deutscher Wetterdienst http://www.cosmo-model.org
  7. Doms G, Förstner J, Heise E, Herzog HJ, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2007) A description of the non-hydrostatic regional LM-Model. Part II. Physical parametrization. Deutscher Wetterdienst http://www.cosmo-model.org
  8. Emori S (1998) The interaction of cumulus convection with soil moisture distribution: an idealized simulation. J Geophys Res 103:8873–8884CrossRefGoogle Scholar
  9. Fink AH, Vincent D, Ermert V (2006) Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon Weather Rev 134:2143–2164CrossRefGoogle Scholar
  10. Flamant C, Chaboureau JP, Parker DJ, Taylor CM, Cammas JP, Bock O, Timouk F, Pelon J (2007) Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q J R Meteorol Soc 133:1175–1189. doi:10.1002/qj.97 CrossRefGoogle Scholar
  11. Gaertner MA, Domínguez M, Garvert M (2010) A modelling case study of soil-atmosphere coupling. Q J R Meteorol Soc 136(s1):483–495CrossRefGoogle Scholar
  12. Gantner L, Kalthoff N (2010) Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa. Q J R Meteorol Soc 136(s1):471–482. doi:10.1002/qj.425 CrossRefGoogle Scholar
  13. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, LondonGoogle Scholar
  14. Grams C, Jones S, Douglas P, Marsham J, Haywood J, Heuveline V (2010) The Atlantic inflow to the Saharan heat low: observations and modelling. Q J R Meteorol Soc 136(s1):125–140. doi:10.1002.qj.429 CrossRefGoogle Scholar
  15. Guichard F, Asencio N, Peugeot C, Bock O, Redelsperger JL, Cui X, Garvert M, Lamptey B, Orlandi E, Sander J, Fierli F, Gaertner MA, Jones S, Lafore JP, Morse A, Nuret M, Boone A, Balsamo G, de Rosnay P, Decharme B, Harris PP, Bergès JC (2010) An intercomparison of simulated rainfall and evapotranspiration associated with a mesoscale convective system over West Africa. Wea Forecasting 25:37–60. doi:10.1175/2009WAF2222250.1 CrossRefGoogle Scholar
  16. Heise E, Lange M, Ritter B, Schrodin R (2003) Improvement and validation of the multi-layer soil model. COSMO Newsletter 3:198–203, http://www.cosmo-model.org Google Scholar
  17. Kohler M, Kalthoff N, Kottmeier C (2010) The impact of soil moisture modifications on CBL characteristics in West Africa: a case-study from the AMMA campaign. Q J R Meteorol Soc 136(s1):442–455. doi:10.1002/qj.430 CrossRefGoogle Scholar
  18. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (the GLACE Team) (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140Google Scholar
  19. Lauwaet D, van Lipzig NPM, Kalthoff N, Ridder KD (2010) Impact of vegetation changes on a mesoscale convective system in West Africa. Meteorol Atmos Phys 107:109–122. doi:10.1007/s00703-010-0079-7 Google Scholar
  20. Lebel T, Delclaux F, LeBarbè L, Polcher J (2000) From GCM scales to hydrological scales: rainfall variability in West Africa. Stochastic Environ Res Risk Assess 14:275–295CrossRefGoogle Scholar
  21. Lebel T, Parker DJ, Flamant C, Bourleés B, Marticorena B, Mougin E, Peugeot C, Diedhiou A, Haywood JM, JB JBN, Polcher J, Redelsperger JL, Thorncroft CD (2010) The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region. Q J R Meteorol Soc 136(s1):8–33Google Scholar
  22. Mahouf JF, Richard E, Mascart P (1987) The influence of soil and vegetation on the development of mesoscale circulations. J Clim Appl Meteorol 28:1483–1495Google Scholar
  23. Mathon V, Laurent H, Lebel T (2002) Mesoscale convective system rainfall in the Sahel. J Appl Meteorol 41:1081–1092CrossRefGoogle Scholar
  24. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical flow problems. Rev Geophys Space Phys 20:831–875. doi:10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2
  25. Parker DJ (2002) The response of CAPE and CIN to tropospheric thermal variations. Q J R Meteorol Soc 128:119–130CrossRefGoogle Scholar
  26. Parker DJ, Fink A, Janicot S, Ngamini JB, Douglas M, Afiesimama E, Agusti-Panareda A, Beljaars A, Dide F, Diedhiou A, Lebel T,J, Redelsperger JL, Thorncroft CD, Wilson GA (2008) The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull Am Meteorol Soc 89:1015–1027CrossRefGoogle Scholar
  27. Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177CrossRefGoogle Scholar
  28. Rabin RM, Stadler S, Wetzel PJ, Stensrud DJ, Gregory M (1990) Observed effects of landscape variability on convective clouds. Bull Amer Meteor Soc 71:272–280CrossRefGoogle Scholar
  29. Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsl 1:89–97, http://www.cosmo-model.org
  30. Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African Monsoon Multidisciplinary Analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746CrossRefGoogle Scholar
  31. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325. doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
  32. Schättler U, Doms G, Schraff C (2008) A description of the non-hydrostatic regional COSMO-Model. Part VII. User’s Guide. Deutscher Wetterdienst http://www.cosmo-model.org
  33. Schwendike J, Jones S (2010) Convection in an African Easterly Wave over West Africa and the eastern Atlantic: a model case study of Helene (2006). Q J R Meteorol Soc 136(s1):364–396. doi:10.1002/qj.566
  34. Schwendike J, Kalthoff N, Kohler M (2010) The impact of mesoscale convective systems on the surface and boundary layer structure in West Africa during the AMMA campaign. Q J R Meteorol Soc 136:566–582. doi:10.1002/qj.599 CrossRefGoogle Scholar
  35. Segal M, Arritt RW (1992) Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull Am Meteorol Soc 73:1593–1604CrossRefGoogle Scholar
  36. Segal M, Purdom JFW, Song JL, Pielke RA, Mahrer Y (1986) Evaluation of cloud shading effects on the generation and modification of mesoscale circulations. Mon Weather Rev 114:1201–1212CrossRefGoogle Scholar
  37. Taylor CM, Ellis RJ (2006) Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys Res Lett 33:L03404. doi:10.1029/2005GL025252
  38. Taylor CM, Parker DJ, Harris PP (2007) An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys Res Lett 34:L15801Google Scholar
  39. Taylor CM, Harris PP, Parker DJ (2010) Impact of soil moisture on the development of a Sahelian mesoscale convective system: a case-study from the AMMA Special Observing Period. Q J R Meteorol Soc 136(s1):456–470CrossRefGoogle Scholar
  40. Taylor CM, Parker DJ, Kalthoff N, Gaertner MA, Philippon N, Bastin S, Harris PP, Boone A, Guichard F, Agusti-Panareda A, Baldi M, Cerlini P, Descroix L, Douville H, Flamant C, Grandpeix JY, Polcher J (2011) New perspectives on land-atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis (AMMA). Atmospheric Sci Lett 12:38–44. doi:10.1002/asl.336 Google Scholar
  41. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779;ACMFSF>2.0.CO;2
  42. Trier SB (2003) Convective storms - convective initiation. In: Holton JR, Curry JA, Pyle JA (eds) Encyclopedia of atmospheric sciences, vol 2. Academic Press, LondonGoogle Scholar
  43. Warner TT (2004) Desert meteorology. Cambridge University Press, LondonGoogle Scholar
  44. Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548CrossRefGoogle Scholar
  45. Williams E, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bianca Adler
    • 1
  • Norbert Kalthoff
    • 1
  • Leonhard Gantner
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations