Advertisement

Meteorology and Atmospheric Physics

, Volume 107, Issue 1–2, pp 51–64 | Cite as

Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model

  • Thomas Nehrkorn
  • Janusz Eluszkiewicz
  • Steven C. Wofsy
  • John C. Lin
  • Christoph Gerbig
  • Marcos Longo
  • Saulo Freitas
Original Paper

Abstract

This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top–down estimates of terrestrial greenhouse gas fluxes. Examples of the model’s application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF–STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.

Keywords

Mass Flux Numerical Weather Prediction Model Planetary Boundary Layer Height Regional Atmospheric Modeling System Convective Mass Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work at AER has been supported by the NASA Terrestrial Ecology Program (contract NNH05CC42C) and the National Science Foundation Atmospheric Chemistry Program (Grant ATM-0836153). The original manuscript was improved through constructive reviews by Arlyn Andrews (NOAA/Earth System Research Laboratory) and an anonymous reviewer.

References

  1. Arakawa A, Lamb V (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Methods in computational physics, vol 17. Academic Press, pp 174–267Google Scholar
  2. Avey L, Garrett TJ, Stohl A (2007) Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation. J Geophys Res 112:D10S33. doi: 10.1029/2006JD007581 CrossRefGoogle Scholar
  3. Buckley RL (2000) Modeling atmospheric deposition from a cesium release in Spain using a stochastic transport model, 11th Joint Conference on the Applications of Air Pollution Meteorology with the Air and Waste Management Association, Long Beach, CA, American Meteorological Society, pp 190–195Google Scholar
  4. Calvin W et al (2007) Report from the 2013 Mars Science Orbiter (MSO) Second Science Group, 72 pp., posted June 2007 by the Mars Exploration Program Analysis Group (MEPAG). Available at http://mepag.jpl.nasa.gov/reports/index.html
  5. Chen S-H, Sun W-Y (2002) A one-dimensional time dependent cloud model. J Meteorol Soc Jpn 80(1):99–118CrossRefGoogle Scholar
  6. Chou M-D, Suarez M (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. Tech Memo 104606, NASA, Washington, DCGoogle Scholar
  7. Cotton WR et al (2003) RAMS 2001: current status and future directions. Meteorol Atmos Phys 82:5–29CrossRefGoogle Scholar
  8. Draxler RR, Hess GD (1997) Description of the HYSPLIT_4 modeling system, NOAA Tech. Memo. ERL ARL-224, 24 ppGoogle Scholar
  9. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308Google Scholar
  10. Fast JD (2005) Evaluation of the boundary layer characteristics and particulates in Mexico City predicted by WRF. In: Joint WRF/MM5 Users’ Workshop, NCAR, Boulder, CO. Available from http://www.wrf-model.org/wrfadmin/presentations.php
  11. Flesch TK, Wilson JE, Yee E (1995) Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J Appl Meteorol 34:1320–1332CrossRefGoogle Scholar
  12. Forster C et al (2004) Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign. J Geophys Res 109:D07S92. doi: 10.1029/2003JD003589 CrossRefGoogle Scholar
  13. Forster C, Stohl A, Seibert P (2007) Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J Appl Meteorol Clim 46:403–422CrossRefGoogle Scholar
  14. Freitas SR, Silva Dias MAF, Silva Dias PL, Longo KM, Artaxo P, Andreae MO, Fisher H (2000) A convective kinematic trajectory technique for low-resolution atmospheric models. J Geophys Res 105(D19):24,375–24386CrossRefGoogle Scholar
  15. Freitas SR, Longo KM, Silva Dias MAF, Silva Dias PL, Chatfield R, Prins E, Artaxo P, Grell G, Recuero FS (2005) Monitoring transport of biomass burning emissions in South America. Environ Fluid Mech 5:135–167CrossRefGoogle Scholar
  16. Freitas SR, Longo KM, Silva Dias MAF, Chatfield R, Silva Dias P, Artaxo P, Andreae MO, Grell G, Rodrigues LF, Fazenda A, Panetta J (2009) The coupled aerosol and tracer transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: model description and evaluation. Atmos Chem Phys 9:2843–2861CrossRefGoogle Scholar
  17. Galmarini S, Bianconi R, Klug W, Mikkelsen T, Addis R, Andronopoulos S, Astrup P, Baklanov A, Bartniki J, Bartzis JC, Bellasio R, Bompay F, Buckley R, Bouzom M, Champion H, D’Amours R, Davakis E, Eleveld H, Geertsema GT, Glaab H, Kollax M, Ilvonen M, Manning A, Pechinger U, Persson C, Polreich E, Potemski S, Prodanova M, Saltbones J, Slaper H, Sofiev MA, Syrakov D, Sørensen JH, Van der Auwera L, Valkama I, Zelazny R (2004) Ensemble dispersion forecasting—Part I: concept, approach and indicators. Atmos Environ 38:4607–4617CrossRefGoogle Scholar
  18. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB, Bakwin PS, Grainger CA (2003) Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J Geophys Res 108(D24):4757. doi: 10.1029/2003JD003770 CrossRefGoogle Scholar
  19. Gerbig C, Korner S, Lin JC (2008) Vertical mixing in atmospheric tracer transport models: error characterization and propagation. Atmos Chem Phys 8:591–602CrossRefGoogle Scholar
  20. Gloor M, Fan S-M, Pacala S, Sarmiento J, Ramonet M (1999) A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J Geophys Res 104(D12):14245–14260CrossRefGoogle Scholar
  21. Gourdji SM, Hirsch AI, Mueller KL, Andrews AE, Michalak AM (2009) Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study. Atmos Chem Phys Discuss 9:22407–22458CrossRefGoogle Scholar
  22. Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  23. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi: 10.1029/2002GL015311 CrossRefGoogle Scholar
  24. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR mesoscale model (MM5), NCAR/Tech. Note-398 + STR, pp. 64-72, Natl Cent For Atmos Res, Boulder, COGoogle Scholar
  25. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi: 10.1029/2008JD009944 CrossRefGoogle Scholar
  26. Iacono MJ, Nehrkorn T, Dudhia J, Wang W (2009) Application of RRTMG/McICA to the Advanced Research WRF weather forecast model. In: Proceedings, 19th ARM science team meeting, Office of Science, US Department of Energy, Louisville, KY. Available from http://www.arm.gov/publications/proceedings/conf19/display.php?id=NTky
  27. Kort EA, Eluszkiewicz J, Stephens BB, Miller JB, Gerbig C, Nehrkorn T, Daube BC, Kaplan JO, Houweling S, Wofsy SC (2008) Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys Res Lett 35:L18 808. doi: 10.1029/2008GL034031 CrossRefGoogle Scholar
  28. Lin JC, Gerbig C (2005) Accounting for the effect of transport errors on tracers inversions. Geophys Res Lett 32:L01802. doi: 10.1029/2004GL021127 CrossRefGoogle Scholar
  29. Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22(6):1065–1092CrossRefGoogle Scholar
  30. Lin JC, Gerbig C, Wofsy SC, Daube BC, Andrews AE, Davis KJ, Grainger CA (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the stochastic time-inverted lagrangian transport (STILT) model. J Geophys Res 108(D16):4493. doi: 10.1029/2002JD003161 CrossRefGoogle Scholar
  31. Lin JC, Gerbig C, Wofsy SC, Draxler R, Chow VY, Gottlieb EW (2007) Designing Lagrangian experiments to measure regional-scale trace gas fluxes. J Geophys Res 112 (D13312). doi: 10.1029/2006JD008077
  32. Medvigy D, Moorcroft PR, Avissar R, Walko RL (2005) Mass conservation and atmospheric dynamics in the regional atmospheric modeling system (RAMS). Environ Fluid Mech 5:109–134CrossRefGoogle Scholar
  33. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360CrossRefGoogle Scholar
  34. Michalak AM, Mueller K, Gourdji S, Hirsch AI, Andrews AE, Lin JC, Nehrkorn T (2007) Bridging across spatial and temporal scales in North American carbon dioxide flux estimation through geostatistical analysis of scale-dependent relationships between carbon flux and auxiliary environmental data. EOS, Trans Amer Geophys Union 88(52), Fall Meet. Suppl., Abstract B42C-01Google Scholar
  35. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16 663–16 682CrossRefGoogle Scholar
  36. Pielke RA, McNider RT, Segal M, Mahrer Y (1983) The use of a mesoscale numerical model for evaluations of pollutant transport and diffusion in coastal regions and over irregular terrain. Bull Am Meteor Soc 64(3):243–249CrossRefGoogle Scholar
  37. Pielke RA et al (1992) A comprehensive meteorological modeling system–RAMS. Meteorol Atmos Phys 49:69–91CrossRefGoogle Scholar
  38. Rodean HC (1996) Stochastic Lagrangian models of turbulent diffusion. Meteorological monographs. American Meteorological Society, Boston, MA, 26(48):84Google Scholar
  39. Seibert P, Frank A (2004) Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos Chem Phys 4:51–63CrossRefGoogle Scholar
  40. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comp Phys 227:3465–3485CrossRefGoogle Scholar
  41. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. Technical Note 468 + STR, MMM Division, NCAR, Boulder, CO, 88 pp. Available from http://www.mmm.ucar.edu/wrf/users/docs/arw v2.pdf
  42. Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474CrossRefGoogle Scholar
  43. Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556CrossRefGoogle Scholar
  44. Uliasz M (1993) The atmospheric mesoscale dispersion modeling system (MDMS). J Appl Meteor 32:139–149CrossRefGoogle Scholar
  45. Worden HM, Logan JA, Worden JR, Beer R, Bowman K, Clough SA, Eldering A, Fisher BM, Gunson MR, Herman RL, Kulawik SS, Lampel MC, Luo M, Megretskaia IA, Osterman GB, Shephard MW (2007) Comparisons of tropospheric emission spectrometer (TES) ozone profiles to ozonesondes: methods and initial results. J Geophys Res 112:D03309. doi: 10.1029/2006JD007258 CrossRefGoogle Scholar
  46. Yamada T, Bunker S (1988) Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J Appl Meteor 27(5):562–578CrossRefGoogle Scholar
  47. Zhao C, Andrews AE, Bianco L, Eluszkiewicz J, Hirsch A, MacDonald C, Nehrkorn T, Fischer ML (2009) Atmospheric inverse estimates of methane emissions from Central California. J Geophys Res 114:D16302. doi: 10.1029/2008JD011671 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thomas Nehrkorn
    • 1
  • Janusz Eluszkiewicz
    • 1
  • Steven C. Wofsy
    • 2
  • John C. Lin
    • 3
  • Christoph Gerbig
    • 4
  • Marcos Longo
    • 2
  • Saulo Freitas
    • 5
  1. 1.Atmospheric and Environmental Research, Inc.LexingtonUSA
  2. 2.Harvard UniversityCambridgeUSA
  3. 3.University of WaterlooWaterlooCanada
  4. 4.Max-Planck-Institut für BiogeochemieJenaGermany
  5. 5.Center for Weather Forecasts and Climate Studies (CPTEC), INPECachoeira PaulistaBrazil

Personalised recommendations