Meteorology and Atmospheric Physics

, Volume 104, Issue 1–2, pp 83–93 | Cite as

Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season

  • Jorge Alberto MartinsEmail author
  • Fábio Luiz T. Gonçalves
  • Carlos A. Morales
  • Gilberto F. Fisch
  • Francisco Geraldo M. Pinheiro
  • João Bosco V. Leal Júnior
  • Carlos J. Oliveira
  • Emerson M. Silva
  • José Carlos P. Oliveira
  • Alexandre A. Costa
  • Maria Assunção F. Silva Dias
Original Paper


Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September–October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1–1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.


Supersaturation Biomass Burning Tropical Rainfall Measure Mission Cloud Droplet Amazonian Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP).


  1. Ackerman AS, Toon OB, Hobbs PV (1993) Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science 262:226–229CrossRefGoogle Scholar
  2. Albrecht B (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. Almeida FC, Munroe GW, Morales CAR, Pereira MC, Barros FA, Sampaio AJC, Oliveira JCP (1992) An instrumented aircraft for tropical precipitation physics research: description and opportunity. WMP Report 19:145–150Google Scholar
  4. Andreae MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89:13–41CrossRefGoogle Scholar
  5. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342CrossRefGoogle Scholar
  6. Cifelli R, Petersen WA, Carey LD, Rutledge SA, Silva Dias MAF (2002) Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J Geophys Res 107:44.1–44.16CrossRefGoogle Scholar
  7. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176CrossRefGoogle Scholar
  8. Cohard J-M, Pinty J-P, Bedos C (1998) Extending Twomey’s analytical estimate of nucleated cloud droplet concentration from CCN spectra. J Atmos Sci 55:3348–3357CrossRefGoogle Scholar
  9. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678CrossRefGoogle Scholar
  10. Decesari S, Fuzzi S, Facchini C, Mircea M, Emblico L, Cavalli F, Maenhaut W, Chi X, Schkolnik G, Falkovich A, Rudich Y, Claeys M, Pashynska V, Vas G, Kourtchev I, Vermeylen R, Hoffer A, Andreae MO, Tagliavini E, Moretti F, Artaxo P (2006) Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos Chem Phys 6:375–402Google Scholar
  11. Feichter J, Roeckner E, Lohmann U, Liepert B (2004) Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J Clim 17:2384–2398CrossRefGoogle Scholar
  12. Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30:20.1–20.4Google Scholar
  13. Gandu AW, Silva Dias PL (1998) Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J Geophys Res 103D6:6001–6015CrossRefGoogle Scholar
  14. Ghan SJ, Leung LR, Easter RC, Abdul-Hazzak H (1997) Prediction of cloud droplet number in a general circulation model. J Geophys Res 102:21777–21794CrossRefGoogle Scholar
  15. Gonçalves FLT, Martins JA, Silva Dias MAF (2008) Shape parameter analysis using cloud spectra and gamma functions in the numerical modeling RAMS during LBA Project at Amazonian region, Brazil. Atmos Res 89:1–11CrossRefGoogle Scholar
  16. Hansen JE, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  17. Hobbs PV, Radke LF (1969) Cloud condensation nuclei from a simulated forest fire. Science 163:279–280CrossRefGoogle Scholar
  18. Hudson JG (1980) Relationship between fog condensation nuclei and fog microstructure. J Atmos Sci 37:1854–1867CrossRefGoogle Scholar
  19. Hudson JG (1983) Effects of CCN on stratus clouds. J Atmos Sci 40:480–486CrossRefGoogle Scholar
  20. Hudson JG (1993) Cloud condensation nuclei. J Appl Meteor 32:596–607CrossRefGoogle Scholar
  21. Hudson JG, Mishra S (2007) Relationships between CCN and cloud microphysics variations in clean maritime air. Geophys Res Lett 34:L16804. doi: 10.1029/2007GL030044 CrossRefGoogle Scholar
  22. Hudson JG, Yum SS (2001) Maritime–continental drizzle contrasts in small cumuli. J Atmos Sci 58:915–926CrossRefGoogle Scholar
  23. Hudson JG, Yum SS (2002) Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J Geophys Res 107(D19):8022. doi: 10.1029/2001JD000829 CrossRefGoogle Scholar
  24. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: scientific basis. Fourth assessment report of the Intergovernmental Panel on Climate Change, CambridgeGoogle Scholar
  25. Jiusto JE (1967) Aerosol and cloud microphysics measurements in Hawaii. Tellus 19:359–368Google Scholar
  26. Johnson BT, Shine KP, Forster PM (2004) The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc 130:1407–1422CrossRefGoogle Scholar
  27. Kocmond W (1965) Investigation of warm fog properties and fog modification concepts. Annual report, GAL report no. RM-1788-P-9, RM-1788-P-10Google Scholar
  28. Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik U, Aalto P, Keronen P, Hakola H, Back J, Hoffmann T, Vesala T, Hari P (2003) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys Discuss 3:6093–6107Google Scholar
  29. Lohmann U, Feichter J (2004) Global indirect aerosol effects: a review. Atmos Chem Phys Discuss 4:7561–7614Google Scholar
  30. Martins JA, Silva Dias MAF (2009) The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region. Environ Res Lett 4:015002. doi: 10.1088/1748-9326/4/1/015002 CrossRefGoogle Scholar
  31. Martins JA, Silva Dias MAF, Gonçalves FLT (2009) Impact of biomass burning aerosols on precipitation in the Amazon: a modeling case study. J Geophys Res 114:D02207. doi: 10.1029/2007JD009587 CrossRefGoogle Scholar
  32. Oliveira JCP, Vali G (1995) Calibration of a photoelectric cloud condensation nucleus counter. Atmos Res 38:237–248CrossRefGoogle Scholar
  33. Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res 103(D24):31821–31836CrossRefGoogle Scholar
  34. Raga GB, Jonas PR (1995) Vertical distribution of aerosol particles and CCN in clear air around the British Isles. Atmos Environ 29:673–684CrossRefGoogle Scholar
  35. Rissler J, Vestin A, Swietlicki E, Fisch G, Zhou J, Artaxo P, Andreae MO (2006) Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos Chem Phys 6:471–491CrossRefGoogle Scholar
  36. Roberts GC, Andreae MO, Zhou J, Artaxo P (2001) Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys Res Lett 28:2807–2810CrossRefGoogle Scholar
  37. Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108CrossRefGoogle Scholar
  38. Sherwood S (2002) A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science 295:1272–1275CrossRefGoogle Scholar
  39. Silva Dias MAF, Rutledge S, Kabat P, Silva Dias PL, Nobre C, Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi AO, Fuentes JD, Rocha HR, Marengo J, Plana-Fattori A, Sá LDA, Alvalá RCS, Andreae MO, Artaxo P, Gielow R, Gatti L (2002) Clouds and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J Geophys Res 107(D20):39.1–39.20Google Scholar
  40. Sotiropoulou R-EP, Medina J, Nenes A (2006) CCN predictions: is theory sufficient for assessments of the indirect effect? Geophys Res Lett 33:L05816. doi: 10.1029/2005GL025148 CrossRefGoogle Scholar
  41. Twomey S (1959) The nuclei of natural cloud formation—part II: the supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis Pura e Appl 43:243–249CrossRefGoogle Scholar
  42. Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  43. Twomey S, Wojciechowski TA (1969) Observations of the geographical variation of cloud nuclei. J Atmos Sci 26:684–688CrossRefGoogle Scholar
  44. VanReken TM, Rissman TA, Roberts GC, Varutbangkul V, Jonsson HH, Flagan RC, Seinfeld JH (2003) Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. J Geophys Res 108(D20):4633. doi: 10.1029/2003JD003582 CrossRefGoogle Scholar
  45. Yum SS, Hudson JG (2002) Maritime/continental microphysical contrasts in stratus. Tellus B 54:61–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jorge Alberto Martins
    • 1
    Email author
  • Fábio Luiz T. Gonçalves
    • 2
  • Carlos A. Morales
    • 2
  • Gilberto F. Fisch
    • 3
  • Francisco Geraldo M. Pinheiro
    • 4
  • João Bosco V. Leal Júnior
    • 4
  • Carlos J. Oliveira
    • 4
  • Emerson M. Silva
    • 4
  • José Carlos P. Oliveira
    • 5
  • Alexandre A. Costa
    • 4
    • 6
  • Maria Assunção F. Silva Dias
    • 2
    • 7
  1. 1.Universidade Tecnológica Federal do ParanáLondrinaBrazil
  2. 2.Universidade de São PauloSão PauloBrazil
  3. 3.Centro Técnico AeroespacialSão José dos CamposBrazil
  4. 4.Universidade Estadual do CearáFortalezaBrazil
  5. 5.Universidade Federal do CearáFortalezaBrazil
  6. 6.Fundação Cearense de Meterologia e Recursos HídricosFortalezaBrazil
  7. 7.Centro de Previsão de Tempo e Estudos ClimáticosCachoeira PaulistaBrazil

Personalised recommendations