Urban-breeze circulation during the CAPITOUL experiment: numerical simulations

  • J. HidalgoEmail author
  • V. Masson
  • G. Pigeon


In this study we present a numerical simulation of the urban-breeze circulation observed in Toulouse, South-West of France, during the Intensive Observation Period number 5 (IOP5, 3rd and 4th July 2004) of the CAPITOUL experiment (Feb. 2004–2005). The numerical simulation is performed with the non-hydrostatic atmospheric model MesoNH (Lafore et al. 1998) coupled with the urban surface scheme TEB (Masson 2000). Four two-way, grid-nested models with horizontal grid resolution of 12 km, 3 km, 1 km and 0.25 km are used.

The diurnal cycle of temperature, the nocturnal heat island and the early morning cool island are reproduced by the model. For the urban-breeze period, between 12.00 UTC to 18.00 UTC, the heat island structure and the simulated turbulent fluxes are discussed based on the observed surface energy balance and urban canopy temperature. The numerical simulations confirm the presence of a convergent circulation at the surface towards the city centre and a divergent counter-current 1500 m above the ground. The intensity of the urban-breeze circulation is of the order of 1.5 m s−1 and its extension, in the mean wind axis, is two times the diameter of the city.

The dynamical perturbation on the ABL due to the roughness of the city is only significant up to 50 m of height, the urban breeze circulation being caused by the pressure gradient due to the UHI-induced thermal effects. An evaluation of the improvement on the ABL thermodynamics representation when going down to 250 m of horizontal resolution instead of 1 km is also presented.


City Centre Atmospheric Boundary Layer Potential Temperature Urban Heat Island Bound Layer Meteorol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asselin, R 1972Frequency filter for time integrationsMon Wea Rev100487490CrossRefGoogle Scholar
  2. Bougeault, P, Lacarrère, P 1989Parameterization of orography-induced turbulence in a mesobeta-scale modelMon Wea Rev11718721890CrossRefGoogle Scholar
  3. Carpenter, KM 1982Note on the paper: radiation conditions for lateral boundaries of limited area numerical modelsQuart J Roy Meteor Soc110717719CrossRefGoogle Scholar
  4. CORINE (2000) CORINE land cover. Technical guide, addendum. Technical Report 40, European Environment AgencyGoogle Scholar
  5. Courtier Ph, Freydier C, Geleyn J, Rabier F, Rochas M (1991) The Arpege project at Météo-France. In: Proc. ECMWF Workshop on Numerical Methods in Atmospheric Modelling, 9–13 Sept 1991, vol 2, pp. 193–231Google Scholar
  6. Cuxart, J, Bougeault, P, Redelsperger, J-L 2000A turbulence scheme allowing for mesoscale and large-eddy simulationsQ J Roy Meteorol Society126130Google Scholar
  7. Deardoff, JW 1970A three-dimensional numerical study investigation of the idealized planetary boundary layerGeophys Fluid Dyn27377410CrossRefGoogle Scholar
  8. Hidalgo, J, Pigeon, G, Masson, V 2008Urban-breeze circulation during the CAPITOUL experiment: observational data analysis approachMeteorol Atmos Phys102223241Google Scholar
  9. Lac, C, Bonnardot, F, Camail, C, Connan, O, Maro, D, Herbert, D, Rozet, M, Pergaud, J 2008Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experimentMeteorol Atmos Phys102263287Google Scholar
  10. Lafore, JP, Stein, J, Asencio, N, Bougeault, P, Ducrocq, V, Duron, J, Fischer, C, Hereil, P, Mascart, P, Masson, V, Pinty, JP, Redelsperger, JL, Richard, E, de Arellano, JV 1998The MesoNH atmospheric simulation system. Part I: Adiabatic formulation and control simulationAnn Geophis1690109CrossRefGoogle Scholar
  11. Lemonsu, A 2004Sea-Town Interactions over Marseille: 3rd urban boundary layer and thermodinamical field near the surfaceTheor Appl Climatol84171178CrossRefGoogle Scholar
  12. Lemonsu, A, Masson, V 2002Simulation of a summer urban breeze over ParisBound Layer Meteorol104463490CrossRefGoogle Scholar
  13. Masson, V 2000A physically-based scheme for the urban energy budget in atmospherics modelsBound Layer Meteorol94357397CrossRefGoogle Scholar
  14. Masson, V 2006Urban surface modelling and the meso-scale impact of citiesTheor Appl Climatol843545CrossRefGoogle Scholar
  15. Masson, V, Grimmond, CSB, Oke, T 2002Evaluation of the town energy balance (TEB) scheme with direct measurements from dry districts in two citiesJ Appl Meteor4110111026Google Scholar
  16. Masson, V, Champeaux, JL, Chauvin, F, Meriguet, C, Lacaze, R 2003A global data base of land surface parameters at 1 km resolution in meteorological and climate modelsJ Climate1612611282Google Scholar
  17. Masson, V, Gomes, L, Pigeon, G, Liousse, C, Pont, V, Lagouarde, J-P, Voogt, J, Salmond, J, Oke, TR, Hidalgo, J, Legain, D, Garrouste, O, Lac, C, Connan, O, Briottet, X, Lachérade, S, Tulet, P 2008The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experimentMeteorol Atmos Phys102135157CrossRefGoogle Scholar
  18. Morcrette, JJ 1991Radiation and cloud radiative properties in the European center for forecasts forecasting systemJ Geophys9691219132CrossRefGoogle Scholar
  19. Noilhan, J, Planton, S 1989A simple parametrization of land surface processes for meteorological modelsMon Wea Rev117536549CrossRefGoogle Scholar
  20. Oke, TR 1987Boundary layer climates2MethuenLondon, New YorkGoogle Scholar
  21. Oke, TR 1988The urban energy balanceProg Phys Geogr12471508CrossRefGoogle Scholar
  22. Oke, TR 2005Towards better scientific communication in urban climateTheor Appl Climatol84179190CrossRefGoogle Scholar
  23. Pigeon, G, Lemonsu, A, Barrié, J, Durand, P, Masson, V 2006Urban thermodynamic Island in a coastal city analysed from an optimized surface networkBound Layer Meteorol232137Google Scholar
  24. Pigeon, G, Legain, D, Durand, P, Masson, V 2007Anthropogenic heat release in an old European city (Toulouse, France)Int J Climatol2719691981CrossRefGoogle Scholar
  25. Pinty J, Jabouille P (1998) A mixed-phase cloud parametrization for use in mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations. Proc. Conf. of Cloud Physics, Everett, WA, USA, Amer. Meteor. Soc., pp. 217–20Google Scholar
  26. Sharan, M, Gopalakrishnan, S, McNider, R, Singh, M 2000A numerical investigation of urban influences on local meteorological conditions during the Bhopal gas accidentAtmos Environ4539552CrossRefGoogle Scholar
  27. Stein, J, Richard, E, Lafore, J, Pinty, J, Asencio, N, Cosma, S 2000High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterizationMeteorol Atmos Phys72203222CrossRefGoogle Scholar
  28. Steyn, D 1998Scaling the vertical structure of sea breezeBound Layer Meteorol86505524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.GAME/CNRMMétéo-France, CNRSToulouseFrance
  2. 2.FAOC/FAVigo UniversityOurenseSpain

Personalised recommendations