Advertisement

Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experiment

  • C. Lac
  • F. Bonnardot
  • O. Connan
  • C. Camail
  • D. Maro
  • D. Hebert
  • M. Rozet
  • J. Pergaud
Review Article

Summary

Atmospheric transport and dispersion were investigated during the CAPITOUL campaign using measurements of sulphur hexafluoride (SF6) tracer. Six releases of SF6 tracer were performed (March 9–11 and July 1–3, 2004) in the same suburban area of Toulouse conurbation, during the Intensive Observing Periods (IOP) of CAPITOUL. Concentration data were collected both at ground-level along axes perpendicular to the wind direction (at distances ranging between 280 m and 5000 m from the release point), and above the ground at 100 m and 200 m height using aircraft flights. Meteorological conditions were all associated with daytime anticyclonic conditions with weak winds and convective clear and cloudy boundary layers. A meso-scale dispersion modelling system, PERLE, developed at Meteo-France for environmental emergencies in case of atmospheric accidental release, was evaluated in terms of meteorology and dispersion, for the different tracer experiments, in its operational configuration. PERLE is based on the combination of the non-hydrostatic meso-scale MESO-NH model, running at 2 km horizontal resolution, and the Lagrangian particle model SPRAY. The statistical meteorological evaluation includes two sets of simulations with initialisation from ECMWF or ALADIN. The meteorological day-to-day error statistics show fairly good Meso-NH predictions, in terms of wind speed, wind direction and near-surface temperature. A strong sensitivity to initial fields concerns the surface fluxes, crucial for dispersion, with an excessive drying of the convective boundary layer with ALADIN initial fields, leading to an overprediction of surface sensible heat fluxes. A parameterization of dry and shallow convection according to the Eddy-Diffusivity-Mass-Flux (EDMF) approach (Pergaud et al. 2008) allows an efficient mixing in the Convective Boundary Layer (CBL) and improves significantly the wind fields.

A statistical evaluation of the dispersion prediction was then performed and shows a realistic behaviour of the system, with a good location of the concentration maxima. But the lateral spread of the plumes is quasi-systematically underestimated, mainly in July, even when meteorological conditions are well reproduced. In the same way, higher integrated concentration values are slightly overestimated. The remove of the EDMF scheme in Meso-NH artificially improves the horizontal dispersion, underlying compensating errors. Sensitivity tests performed on the Lagrangian time scales in the coupling Meso-NH-SPRAY have been conducted. But they don’t solve the shortcoming and lead to the conclusion that SPRAY could have some difficulties to correctly reproduce the mixing for daytime thermal convection.

Keywords

Urban Heat Island Convective Boundary Layer Atmos Environ Horizontal Cross Section Lagrangian Stochastic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anfossi, D, Desiato, F, Tinarelli, G, Brusasca, G, Ferrero, E, Sachetti, D 1998TRANSALP 1989 experiment campaign – II. Simulation of a tracer experiment with Lagrangian particle modelsAtmos Environ3211571166CrossRefGoogle Scholar
  2. Angevine, WM 2005An integrated turbulence scheme for boundary layers with shallow cumulus applied to pollutant transportJ Appl Met4414361452CrossRefGoogle Scholar
  3. Bechtold, P, Bazile, E, Guichard, F, Mascart, P, Richard, E 2001A mass-flux convection scheme for regional and global modelsQuart J Roy Meteor Soc127869886CrossRefGoogle Scholar
  4. Beljaars, ACM, Viterbo, P, Miller, M, Betts, A 1996The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomaliesMon Wea Rev124362383CrossRefGoogle Scholar
  5. Bougeault, P, Lacarrère, P 1989Parameterization of orography-induced turbulence in a meso-β scale modelMon Wea Rev11718721890CrossRefGoogle Scholar
  6. Bouttier F, Hello G, Seity Y, Malardel S, Lac C (2006) Status of the AROME project in MF in winter 2006. ALADIN Newsletter, No. 29, March 2006, pp. 47–9Google Scholar
  7. Brown, MJ, Arya, SP, Snyder, WH 1993Vertical dispersion from surface and elevated release. An investigation of a non-Gaussian plume modelJ Appl Met3212631280CrossRefGoogle Scholar
  8. Carvalho, JC, Anfossi, D, Trini Castelli, S, Degrazia, GA 2002Application of a model system for the study of transport and diffusion in complex terrain to the TRACT experimentAtmos Environ3611471161CrossRefGoogle Scholar
  9. Chang JC, Hanna SR (2005) Technical descriptions and user’s guide for the BOOT statistical model evaluation software package, Version 2.0. Available on harmo.org/Kit/Download/Kit_key.pdf
  10. Chiba, O 1978Stability dependence of the vertical wind velocity skewness in the atmospheric surface layerJ Met Soc Jpn56140142Google Scholar
  11. Connan O, Maro D, Germain P, Hébert D, Rozet M, Lac C, Camail C, Bonnardot F (2005) Study of atmospheric dispersion in urban environments through release of SF6 passive tracer. Comparison of the experimental results with 3 Gaussian models. 10th Int. Conf. on Harmonisation within Atmospheric dispersion modeling for regulatory purposes. Crete, Oct. 2005Google Scholar
  12. Cox, R, Bauer, BL, Smith, T 1998A mesoscale model intercomparisonBull Amer Meteor Soc79265283CrossRefGoogle Scholar
  13. Cuxart, J, Bougeault, Ph, Redelsperger, JL 2000A turbulence scheme allowing for mesoscale and large-eddy simulationsQuart J Roy Meteor Soc126130CrossRefGoogle Scholar
  14. Du, S 1997Universality of the LagrangianLagrangian velocity structure function constant (C0) across different kinds of turbulenceBound Lay Met83207219CrossRefGoogle Scholar
  15. Ferrero, E, Trini Castelli, S, Anfossi, D 2003Turbulence fields for atmospheric dispersion models in horizontally non-homogeneous conditionsAtmos Environ3723052315CrossRefGoogle Scholar
  16. Gariazzo, C, Pellicioni, A, Bogliolo, MP, Scalisi, G 2004Evaluation of a Lagrangian particle model (SPRAY) to assess environmental impact of an industrial facility in complex terrainWater Air Soil Pollut155137158CrossRefGoogle Scholar
  17. Habets, F, Boone, A, Champeaux, JL, Etchevers, P, Franchistéguy, L, Leblois, E, Ledoux, E, Le Moigne, P, Martin, E, Morel, S, Noilhan, J, Quintana Seguí, P, Rousset-Regimbeau, F, Viennot, P 2008The SAFRAN-ISBA-MODCOU hydrometeorological model applied over FranceJ Geophys Res113D06113DOI: 10.1029/2007JD008548CrossRefGoogle Scholar
  18. Hanna, SR 1982Applications in air pollution modelingNieuwstadt, FTMVan Dop, H eds. Atmospheric turbulence and Air Pollution ModellingReidelDordrechtChapter 7Google Scholar
  19. Hanna, SR 1989Confidence limit for air quality models as estimated by bootstrap and jackknife resampling methodsAtmos Environ2313851395CrossRefGoogle Scholar
  20. Hanna, SR, Yang, R 2001Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients and mixing depthsJ Appl Meteor4010951104CrossRefGoogle Scholar
  21. Holmes, NS, Morawska, L 2006A review of dispersion modeling and its application to the dispersion of particles: an overbiew of different dispersion models availableAtmos Environ4059025928CrossRefGoogle Scholar
  22. INVS (2002) Rapport de l’Institut National de Veille Sanitaire: ≪Conséquences sanitaires de l’explosion à l’usine de Grande Paroisse le 21 Septembre 2001≫. Available on http://www.invs.sante.fr/publications/2002/azf_09072002/rap_interm_azf_090702.pdf
  23. Kurbanmuradov, O, Sabelfeld, K 2000Lagrangian stochastic models for turbulent dispersion in the atmospheric boundary layerBound Layer Meteor97191218CrossRefGoogle Scholar
  24. Lac C, Bonnardot F, Sandu I, Bouzom M, Bompay F, Maro D (2002) Evaluation of meso-scale dispersion modeling for accidental release. Air Pollution International Conference, Athens, GreeceGoogle Scholar
  25. Lafore, JP, Stein, J, Asencio, N, Bougeault, P, Ducrocq, V, Duron, J, Fischer, C, Hereil, P, Mascart, P, Pinty, JP, Redelsperger, JL, Richard, E, Vila-Guerau de Arellano, J 1998The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulationsAnn Geophys1690109CrossRefGoogle Scholar
  26. Lappen, C-L, Randall, DA 2001Toward a unified parameterization of the boundary layer and moist convection. Part III: Simulations of clear and cloudy convectionJ Atmos Sci5820522072CrossRefGoogle Scholar
  27. Mahfouf J-F, Bergaoui K, Draper C, Bouyssel F, Taillefer F, Taseva L (2008) A comparative study of two soil analysis schemes using screen-level observations. To be submittedGoogle Scholar
  28. Malardel S, Lac C, Pinty J-P, Thouron O, Bouteloup Y, Bouyssel F, Seity Y, Nuissier O (2006) Representation of clouds in AROME. Proceedings of the ECMWF Workshop on parameterization of clouds in large-scale models. 13–15 Nov. 2006Google Scholar
  29. Maro D, Germain P, Hebert D, Solier L, Rozet M, Leclerc G, Le Cavelier S (2002) Krypton-85: a tool for investigating near field atmospheric dispersion for elevated emissions around La Hague spent fuel nuclear reprocessing plant. 8th Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes. Sofia, Bulgaria, Oct. 2002Google Scholar
  30. Masson, V 2000A physically-based scheme for the urban energy budget in atmospheric modelsBound Layer Meteorol94357397CrossRefGoogle Scholar
  31. Mellor, GL, Yamada, T 1982Development of a turbulence closure model for geophysical fluids problemsRev Geophys Space Phys20851875CrossRefGoogle Scholar
  32. Noilhan, J, Planton, S 1989A simple parameterization of land surface processes for meteorological modelsMon Wea Rev117536549CrossRefGoogle Scholar
  33. Pergaud J, Masson V, Malardel S, Couvreux F (2008) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound Lay Meteor (Submitted to)Google Scholar
  34. Pinty J-P, Jabouille P (1998) A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations. Proc. Conf. Cloud Physics, Everett, WA, USA, Amer Meteor Soc, Aug. 1999, 217–20Google Scholar
  35. Romeo E (1994) Contribution à l’étude de la diffusion turbulente d’un pollutant dans l’atmosphère. Ph.D. Univ., Paris 6Google Scholar
  36. Snyder, WH, Lawson, RE, Shipman, MS, Lu, J 2002Fluid Modeling of atmospheric dispersion in the convective boundary layerBound Layer Meteor102335366CrossRefGoogle Scholar
  37. Soares, PM, Miranda, PM, Siebesma, P, Teixeira, J 2004An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convectionQuart J Roy Meteor Soc13033653383CrossRefGoogle Scholar
  38. Stohl, A, Hittengerger, M, Wotawa, G 1998Validation of the Lagrangian particle dispersion model Flexpart against large scale tracer experiment dataAtmos Environ2442454264CrossRefGoogle Scholar
  39. Thomson, DJ 1984Random walk modelling of diffusion in inhomogeneous turbulenceQuart J Roy Meteor Soc11011071120CrossRefGoogle Scholar
  40. Thomson, DJ 1987Criteria for the selection of stochastic models of particle trajectories in turbulent flowsJ Fluid Mech180529556CrossRefGoogle Scholar
  41. Tinarelli, G, Anfossi, D, Brusasca, G, Ferrero, G, Giostra, U, Morselli, MG, Moussafir, J, Tampieri, F, Trombetti, F 1994Lagrangian particle simulation of tracer dispersion in the lee of a schematic two-dimensional hillJ Appl Met33744755CrossRefGoogle Scholar
  42. Uliasz, M, Stocker, RA, Pielke, RA 1996Regional modeling of air pollution transport in the Southwestern United StatesZannetti, P eds. Environmental Modeling IIIComputational Mechanics PublicationsSouthampton, UK145182Google Scholar
  43. Willis, GE, Deardorff, JW 1976A laboratory model of diffusion into the convective planetary boundary layerQuart J Roy Meteor Soc102427445CrossRefGoogle Scholar
  44. Woodward, PR, Colella, P 1984The Piecewise Parabolic Method (PPM) for gas-dynamical simulationsJ Comput Phys54174201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • C. Lac
    • 1
  • F. Bonnardot
    • 2
  • O. Connan
    • 3
  • C. Camail
    • 2
  • D. Maro
    • 3
  • D. Hebert
    • 3
  • M. Rozet
    • 3
  • J. Pergaud
    • 1
  1. 1.CNRM/GAMEToulouseFrance
  2. 2.DP Meteo-FranceToulouseFrance
  3. 3.Laboratoire de Radioécologie de Cherbourg-Octeville, IRSNFrance

Personalised recommendations