Advertisement

Summer precipitation in the Vosges-Black Forest-region: pre-COPS investigations

  • S. Argence
  • E. Richard
  • D. Lambert
  • P. Arbogast
Article

Summary

As a preliminary investigation for the COPS experiment, a series of 10 rainy days from summer 2006 was studied with the Meso-NH model, run at very high-resolution (2 km), initialized and forced with the ECMWF and ARPEGE analyses. In most cases, the results were not very sensitive to the type of analysis and the model succeeded reasonably well in reproducing the observed precipitation. In the few cases for which the sensitivity to the analysis was significant, the model performance was quite poor. It seems that a discrepancy between the ECMWF- and ARPEGE-driven simulations could be an indicator of low predictability. Furthermore, model skill appears weaker for the precipitation occurring over the Black Forest than for the precipitation affecting the Vosges.

Keywords

Radar Observation Model Skill Hourly Precipitation Heidke Skill Score Potential Vorticity Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arbogast P, Maynard K, Crépin F (2008) Ertel potential vorticity inversion using a digital filter initialization method. Quart J Roy Meteor Soc (To appear)Google Scholar
  2. Hohenegger, C, Schär, C 2007Atmospheric predictability at synoptic versus cloud-resolving scalesBull Amer Meteorol Soc8817831793CrossRefGoogle Scholar
  3. Hohenegger, C, Lüthi, D, Schär, C 2006Predictability mysteries in cloud-resolving modelsMon Wea Rev13420952107CrossRefGoogle Scholar
  4. Lafore, JP, Stein, J, Asencio, N, Bougeault, P, Ducrocq, V, Duron, J, Fisher, C, Héreil, P, Mascart, P, Masson, V, Pinty, J-P, Redelsperger, J-L, Richard, E, Vilà-Guerau de Arellano, J 1998The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulationsAnn Geophys1690109CrossRefGoogle Scholar
  5. Lascaux, F, Richard, E, Keil, C, Bock, O 2004Impact of the MAP reanalysis on the numerical simulation of the MAP-IOP2a convective systemMeteor Zeitschrift134954CrossRefGoogle Scholar
  6. Richard, E, Buzzi ang, A, Zängl, G 2007Quantitative precipitation forecasting in the Alps: the advances achieved by the Mesoscale Alpine ProgrammeQuart J Roy Meteor Soc133831846CrossRefGoogle Scholar
  7. Taylor, KE 2001Summarizing multiple aspects of model performance in a single diagramJ Geophys Res10671837192CrossRefGoogle Scholar
  8. Walser, A, Lüthi, D, Schär, C 2004Predictability of precipitation in a cloud-resolving modelMon Wea Rev132560577CrossRefGoogle Scholar
  9. Wulfmeyer, V, Behrendt, A, Bauer, H-S, Kottmeier, C, Corsmeier, U, Blyth, A, Craig, G, Schumann, U, Hagen, M, Crewell, S, Di Girolamo, P, Flamant, C, Miller, M, Montani, A, Mobbs, S, Richard, E, Rotach, MW, Arpagaus, M, Russchenberg, H, Schlüssel, P, König, M, Gärtner, V, Steinacker, R, Dorninger, M, Turner, DD, Weckwerth, T, Hense, A, Simmer, C 2008The Convective and orographically-induced precipitation study: A Research and Development Project of the World Weather Research Program for Improving Quantitative Precipitation Forecasting in Low-mountain RegionsBull Amer Meteorol Soc8914771486DOI: 10.1175/2008BAMS2367.1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Argence
    • 1
  • E. Richard
    • 1
  • D. Lambert
    • 1
  • P. Arbogast
    • 2
  1. 1.Laboratoire d’AérologieUniversité de Toulouse and CNRSToulouseFrance
  2. 2.Météo-FranceToulouseFrance

Personalised recommendations