Meteorology and Atmospheric Physics

, Volume 103, Issue 1–4, pp 25–34 | Cite as

Rainfall regimes associated with banded convection in the Cévennes-Vivarais area

  • A. Godart
  • S. Anquetin
  • E. Leblois


It is well known that relief plays an important part in the triggering and enhancement of rainfall. Our study is focussed on the southeastern part of France where the topography and the specific meteorological conditions lead to an important hydrometeorological potential risk. From a climatologic point of view, we consider that these rainfall events arise from two kinds of convection: a deep convection essentially governed by synoptic conditions and where the relief has little direct impact and a shallow convection which is strongly controlled by the air circulation within the relief that leads to banded rain patterns. This study aims at understanding and analysing the atmospheric variables that control banded convection in this region. The methodology is first based on the exploration of the meteorological and rainfall data bases in order to identify the meteorological characteristics associated with this convection. Our results show that banded convection events can be characterized by specific vertical profiles of the dynamics variables (wind velocity, shear) and thermodynamic variables (humidity and wet bulb potential temperature profiles, stratification). We thus propose a generic sounding that is used as an input to the MesoNH meteorological model. Preliminary simulation results show a banded organisation of rainfall, which confirms our selection and allow for sensibility studies and further investigations of meteorological characteristics associated with this particular precipitation pattern.


Convection Wind Shear Convective Event Southerly Wind Rainfall Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anquetin, S, Miniscloux, F, Creutin, JD, Cosma, S 2003Numerical simulation of orographic rainbandsJ Geophys Res108CIP.11 1CIP.11 13CrossRefGoogle Scholar
  2. Barros, AP, Lettenmaier, DP 1993Dynamic on modelling of the spatial distribution of precipitation in remote mountainous areasMon Wea Rev12111951214CrossRefGoogle Scholar
  3. Bougeault, P, Lacarrère, P 1989Parameterization of orographic induced turbulence in a mesobeta scale modelMon Wea Rev11718721890CrossRefGoogle Scholar
  4. Bougeault P, Mascart P (2001) The Meso-NH atmospheric simulation system: scientific documentation. Météo France-CNRSGoogle Scholar
  5. Cosma, S, Richard, E, Miniscloux, F 2002The role of small scale orographic features in the spatial distribution of precipitationQuart J Roy Meteor Soc1287592CrossRefGoogle Scholar
  6. Delrieu, G, Ducrocq, V, Gaume, E, Nicol, J, Payrastre, O, Yates, E, Kirstetter, PE, Andrieu, H, Ayral, P, Bouvier, C, Creutin, JD, Livet, M, Anquetin, S, Lang, M, Neppel, L, Obled, C, Parent-du-Chatelet, J, Saulnier, GM, Walpersdorf, A, Wobrock, W 2005The catastrophic flash flood event of 8–9 September 2002 in the Gard region, France, a first case study for the Cévennes-Vivarais Mediterranean Hydro-meteorological ObservatoryJ Hydrometeor63452CrossRefGoogle Scholar
  7. Frei, C, Schär, C 1998A precipitation climatology of the Alps from high-resolution raingauge observationsInt J Climatol18873900CrossRefGoogle Scholar
  8. Gysi, H 1998Orographic influence on the distribution of accumulated rainfall with different wind directionsAtmos Res47–48615633CrossRefGoogle Scholar
  9. Kirshbaum, DJ, Durran, DR 2004Factors governing cellular convection in orographic precipitationJ Atmos Sci61682698CrossRefGoogle Scholar
  10. Kirshbaum, DJ, Durran, DR 2005aObservations and modelling of banded orographic convectionJ Atmos Sci6214631479CrossRefGoogle Scholar
  11. Kirshbaum, DJ, Durran, DR 2005bAtmospheric factors governing banded orographic convectionJ Atmos Sci6237583774CrossRefGoogle Scholar
  12. Lafore, JP, Stein, J, Asencio, N, Bougeault, P, Ducrocq, V, Duron, J, Fischer, C, Héreil, P, Mascart, P, Masson, V, Pinty, J, Redelsperger, J, Richard, E, Vilà-Guerau de Arellano, J 1998The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulationAnn Geophys1690109CrossRefGoogle Scholar
  13. Lin, YL 1993Orographic effects on airflow and mesoscale weather systems over TaiwanTAO4381420Google Scholar
  14. Miniscloux, F, Creutin, JD, Anquetin, S 2001Geostatistical analysis of orographic rainbandsJ Appl Meteor4018351854CrossRefGoogle Scholar
  15. Noilhan, J, Planton, S 1989A simple parameterization of land surface processes for meteorological modelsMon Wea Rev117536549CrossRefGoogle Scholar
  16. Ricard, D 2005Modélisation à haute resolution des pluies intenses dans les Cévennes: le système convectif des 13 et 14 Octobre 1995 (in French)La Météorologie482838Google Scholar
  17. Tourasse P (1981) Analyses spatiales et temporelles de précipitations et utilisation opérationnelle dans un système de prévision des crues-application aux régions cévenoles, Ph.D. Thesis, Institut National Polytechnique de Grenoble, FranceGoogle Scholar
  18. Wratt, DS, Revell, MJ, Sinclair, MR, Gray, WR, Henderson, RD, Chater, AM 2000Relationship between air mass properties and mesoscale rainfall in New Zealand’s Southern AlpsAtmos Res52261282CrossRefGoogle Scholar
  19. Yates E (2006) Convection en région Cévennes Vivarais: Etude de données pluviométriques, simulations numériques et validation multi échelle. Ph.D. Thesis, Institut National Polytechnique de Grenoble, FranceGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.LTHE, Université de Grenoble (CNRS, INPG, IRD, UJF)GrenobleFrance
  2. 2.CemagrefLyonFrance

Personalised recommendations