Advertisement

Meteorology and Atmospheric Physics

, Volume 103, Issue 1–4, pp 95–103 | Cite as

Multi-model simulations of a convective situation in low-mountain terrain in central Europe

  • J. Trentmann
  • C. Keil
  • M. Salzmann
  • C. Barthlott
  • H.-S. Bauer
  • T. Schwitalla
  • M. G. Lawrence
  • D. Leuenberger
  • V. Wulfmeyer
  • U. Corsmeier
  • C. Kottmeier
  • H. Wernli
Open Access
Article

Summary

The goal of the present study is to investigate the variability of simulated convective precipitation by three convection-resolving models using different set-ups and initial and boundary conditions. The COSMO, MM5 and WRF models have been used to simulate the atmospheric situation on 12 July 2006, when local convection occurred in central Europe under weak synoptic forcing. The focus of this investigation is on the convective precipitation in the northern Black Forest in South-West Germany. The precipitation fields from the nine model simulations differ considerably. Six simulations capture the convective character of the event. However, they differ considerably in the location and timing of the intense convective cells. Only one model simulation captures the early onset of precipitation; in all other simulations, the onset of convective precipitation is delayed by up to five hours. All model simulations significantly underpredict the amount of surface precipitation compared to gauge-adjusted radar observations. The simulated diurnal cycles show maximum CAPE and minimum CIN values in the early afternoon. The different onset times of precipitation in the model simulations are shifted in accordance to the simulated diurnal cycles of CAPE and CIN. In the simulations with an early onset of precipitation maximum CAPE and minimum CIN values also appear early. The amount of simulated precipitation, however, does not correlate with CAPE or CIN.

Keywords

Diurnal Cycle Convective Available Potential Energy Convective Precipitation Ensemble Prediction System COSMO Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aoshima F, Behrendt A, Bauer H-S, Wulfmeyer V (2008) Statistics of convection initiation by use of Meteosat Rapid Scanning Data during the Convective and Orographically-Induced Precipitation Study (COPS). Meteorol Z (submitted)Google Scholar
  2. Didone, M, Lüthi, D, Davies, HC 2007Some factors in the design of a regional prediction model: an examination based upon two MAP eventsMeteorol Z16261273CrossRefGoogle Scholar
  3. Finke, U, Hauf, T 1996The characteristics of lightning occurence in Southern GermanyBeitr Phys Atmos69361374Google Scholar
  4. Grell G, Dudhia J, Stauffer D (1995) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Notes 398+STR, NCAR, Boulder, COGoogle Scholar
  5. Groenemeijer P, Barthlott Ch, Behrendt A, Corsmeier U, Handwerker J, Kohler M, Kottmeier Ch, Mahlke H, Pal S, Radlach M, Trentmann J, Wieser A, Wulfmeyer V (2008) Multisensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE. Mon Wea Rev (submitted)Google Scholar
  6. Grzeschik M, Bauer H-S, Wulfmeyer V, Engelbart D, Wandinger U, Mattis I, Althausen D, Engelmann R, Tesche M, Riede A (2008) Four-dimensional variational analysis of water-vapor Raman lidar data and their impact on mesoscale forecasts. J Atmos Oceanic Technol (in press)Google Scholar
  7. Hohenegger, C, Lüthi, D, Schär, C 2006Predictability mysteries in cloud-resolving modelsMon Wea Rev13420952107CrossRefGoogle Scholar
  8. Keil, C, Craig, GC 2007A displacement-based error measure applied in a regional ensemble forecasting systemMon Wea Rev13532483259CrossRefGoogle Scholar
  9. Keil C, Leuenberger D, Craig GC (2007) Radar rainfall assimilation and short-range QPF in a high-resolution EPS, Extended abstract, ICAM 2007Google Scholar
  10. Leuenberger, D, Rossa, A 2007Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective stormMeteorol Atmos Phys98195215CrossRefGoogle Scholar
  11. Molteni, F, Buizza, R, Marsigli, C, Montani, A, Nerozzi, F, Paccagnella, T 2001A strategy for high-resolution ensemble prediction. Part I: Definition of representative members and global-model experimentsQuart J Roy Meteor Soc12720692094CrossRefGoogle Scholar
  12. Schättler U, Doms G, Schraff C (2005) A description of the nonhydrostatic regional model LM, Part VII: User’s guide. Consortium for Small-Scale ModellingGoogle Scholar
  13. Schwitalla T, Bauer H-S, Wulfmeyer V, Zängl G (2008) Systematic errors of QPF in low-mountain regions. Meteorol Z (submitted)Google Scholar
  14. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version V2, NCAR/TN-486/STR, Boulder, CO, USAGoogle Scholar
  15. Steppeler, J, Doms, G, Schättler, U, Bitzer, HW, Gassmann, A, Damrath, U, Gregoric, G 2003Meso-gamma scale forecasts using the nonhydrostatic model LMMeteorol Atmos Phys827596CrossRefGoogle Scholar
  16. Wernli H, Paulat M, Hagen M, Frei C (2008) SAL – a novel quality measure for the verification of quantitative precipitation forecasts. Mon Wea Rev (in press)Google Scholar
  17. Wulfmeyer, V, Bauer, H-S, Grzeschik, M, Behrendt, A, Vandenberghe, F, Browell, EV, Ismail, S, Ferrare, RA 2006Four-dimensional variational assimilation of water vapor differential absorption lidar data: the first case study within IHOP_2002Mon Wea Rev134209230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Trentmann
    • 1
  • C. Keil
    • 2
  • M. Salzmann
    • 3
  • C. Barthlott
    • 4
  • H.-S. Bauer
    • 5
  • T. Schwitalla
    • 5
  • M. G. Lawrence
    • 3
  • D. Leuenberger
    • 6
  • V. Wulfmeyer
    • 5
  • U. Corsmeier
    • 4
  • C. Kottmeier
    • 4
  • H. Wernli
    • 1
  1. 1.Institute for Atmospheric PhysicsJohannes Gutenberg University MainzMainzGermany
  2. 2.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR)OberpfaffenhofenGermany
  3. 3.Department of Atmospheric ChemistryMax Planck Institute for ChemistryMainzGermany
  4. 4.Institute for Meteorology and Climate ResearchKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  5. 5.Institute of Physics and MeteorologyUniversity of HohenheimHohenheimGermany
  6. 6.MeteoSwissZürichSwitzerland

Personalised recommendations