Meteorology and Atmospheric Physics

, Volume 101, Issue 3–4, pp 211–227 | Cite as

Development and propagation of severe thunderstorms in the Upper Danube catchment area: Towards an integrated nowcasting and forecasting system using real-time data and high-resolution simulations

  • A. TaffernerEmail author
  • C. Forster
  • M. Hagen
  • C. Keil
  • T. Zinner
  • H. Volkert


Quickly developing and fast propagating thunderstorms are an important source of high impact weather (sudden occurrence of high precipitation rates and high wind speed) in central Europe. The region to the north of the Alps is particularly prone to such natural threats. Possibilities how to combine data from routine observations taken by geostationary satellites, a ground based radar network and lighting detection systems with high resolution forecast data for routine nowcasting purposes are exemplified for a typical summer situation of August 2004. The gradual development of the different technologies is sketched and a vision of how to combine the various data and forecasting sources is presented.


Radar Severe Thunderstorm Meteorol Atmos Phys Radar Tracker Polarimetric Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergeron T (1928) Über die dreidimensional verknüpfende Wetteranalyse. Erster Teil: Prinzipielle Einführung in das Problem der Luftmassen- und Frontenbildung (On the three-dimensional interlinking weather analysis. First part: Basic introduction to the problem of air-mass and front generation). Geof Publ 5(6): 111ppGoogle Scholar
  2. Cegnar T, Rakovec J (eds) (2005) International Workshop on Timely Warnings of Heavy Precipitation Episodes and Flash Floods. A collection of 10 essays with Slovenia as geographical focus. Special publication, Slovenian Meteorological Society, Ljubljana, 114ppGoogle Scholar
  3. Dixon, M, Wiener, G 1993TITAN: Thunderstorm identification, tracking, analysis, and nowcasting – a radar-based methodologyJ Atmos Ocean Tech10785797CrossRefGoogle Scholar
  4. Doms G, Schättler U (1999) The Nonhydrostatic Limited Area Model LM (Lokal Modell) of DWD: Part I: Scientific Documentation. Deutscher Wetterdienst, Offenbach, 172ppGoogle Scholar
  5. Evans, JE, Ducot, ER 1994The Integrated Terminal Weather System (ITWS)Lincoln Lab J7449474Google Scholar
  6. Frech, M, Holzäpfel, F, Tafferner, A, Gerz, T 2007High-resolution weather database for the terminal area of frankfurt airportJ Appl Meteor Clim4619131932Google Scholar
  7. Gerz, T, Holzäpfel, F, Bryant, W, Köpp, F, Frech, M, Tafferner, A, Winckelmans, G 2005Research towards a wake-vortex advisory system for optimal aircraft spacingC R Physique6501523DOI: 10.1016/j.crhy.2005.06.002CrossRefGoogle Scholar
  8. Grell, GA, Emeis, S, Stockwell, WR, Schoenemeyer, T, Forkel, T, Michalakes, J, Knoche, R, Seidl, W 2000Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaignAtmos Environ3414351453CrossRefGoogle Scholar
  9. Hagen, M, Schiesser, H-H, Dorninger, M 2000Monitoring of mesoscale precipitation systems in the Alps and the northern Alpine foreland by radar and rain gaugesMeteorol Atmos Phys7287100CrossRefGoogle Scholar
  10. Handwerker, J 2002Cell tracking with TRACE3D – a new algorithmAtmos Res611534CrossRefGoogle Scholar
  11. Keil, C, Craig, GC 2007A displacement-based error measure applied in a regional ensemble forecasting systemMon Wea Rev13532483259CrossRefGoogle Scholar
  12. Keil, C, Volkert, H 2000Precipitation in the northern Alpine region: Case-study-type validation of an operational forecast modelMeteorol Atmos Phys72161173CrossRefGoogle Scholar
  13. Kober K, Tafferner A (2008) Tracking and nowcasting of convective cells using remote sensing data from radar and satellite. Meteorol Z (submitted)Google Scholar
  14. Koppert H-J (2002) A Java based meteorological workstation. 18th Internat. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrography, Amer Meteorol Soc, Boston, pp. 307–10Google Scholar
  15. Kron W (2004) Hochwasser. In: Wirtz A (ed) Wetterkatastrophen und Klimawandel (Weather catastrophies and climate change), Edition Wissen, Münchener Rückversicherungs-Gesellschaft, Order no. 302-04220, pp. 122–31Google Scholar
  16. Morel, C, Sénési, S 2002A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: MethodologyQuart J Roy Meteorol Soc12819531971CrossRefGoogle Scholar
  17. Mueller, C, Saxen, T, Roberts, R, Wilson, J, Betancourt, T, Dettling, S, Oien, N, Yee, J 2003NCAR Auto-nowcast systemWea Forecast18545561CrossRefGoogle Scholar
  18. Muller, J-P, Denis, M-A, Dundas, RD, Mitchell, KL, Naud, C, Mannstein, H 2007Stereo cloud-top heights and cloud amount retrieval from ATSR2Int J Remote Sensing2819211938DOI: 10.1080/01431160601030975CrossRefGoogle Scholar
  19. Ranzi, R, Zappa, M, Bacchi, B 2007Hydrological aspects of the mesoscale alpine programme: findings from field experiments and simulationsQuart J Roy Meteorol Soc133867880CrossRefGoogle Scholar
  20. Sénési S, Morel C, Brovelli P, Arbogast E, Autones F, Bernard-Bouissières I, Bouzom M, Reynaud J (2004) Objectoriented convection nowcasting – using radar and satellite data in a man-machine mix. Proc. 3rd European Conference on Radar Meteorology and Hydrology, 6–10 September, Visby, SwedenGoogle Scholar
  21. Steinacker, R, Dorninger, M, Wölfelmaier, F, Krennert, T 2000aAutomatic tracking of convective cells and cell complexes from lightning and radar dataMeteorol Atmos Phys72101110CrossRefGoogle Scholar
  22. Steinacker, R, Haeberli, C, Pöttschacher, W 2000bA transparent method for the analysis and quality evaluation of irregularly distributed and noisy observational dataMon Wea Rev12823032316CrossRefGoogle Scholar
  23. Steppeler, J, Doms, G, Schättler, U, Bitzer, HW, Gassmann, A, Damrath, U, Gregoric, G 2003Meso-gamma scale forecasts using the nonhydrostatic model LMMeteorol Atmos Phys827596CrossRefGoogle Scholar
  24. Tafferner, A, Hauf, T, Leifeld, C, Hafner, T, Leykauf, H, Voigt, U 2003ADWICE-advanced diagnosis and warning system for aircraft icing environmentsWea Forecast18184203CrossRefGoogle Scholar
  25. Tafferner A, Mannstein H, Paccagnella T, Marsigli C, Montani A, Nerozzi F (2002) On finding the best forecast out of an ensemble by satellite image matching for MAP IOP2b. 10th AMS Conf. on Mountain Meteor., Proc. Vol. pp. 201–4Google Scholar
  26. Volkert, H 2000Heavy precipitation in the Alpine Region (HERA): Areal rainfall determination for flood warnings through in-situ measurements, remote sensing and atmospheric modellingMeteorol Atmos Phys727385CrossRefGoogle Scholar
  27. Volkert, H, Gutermann, T 2007Inter-domain cooperation for mesoscale atmospheric laboratories: The Mesoscale Alpine Programme as a rich study caseQuart J Roy Meteorol Soc133949967CrossRefGoogle Scholar
  28. Volkert, H, Weickmann, L, Tafferner, A 1991The papal front of 3 May 1987: A remarkable example of frontogenesis near the AlpsQuart J Roy Meteorol Soc117125150CrossRefGoogle Scholar
  29. Wilson, JW, Crook, NA, Mueller, CK, Sun, J, Dixon, M 1998Nowcasting thunderstorms: a status reportBull Amer Meteor Soc7920792099CrossRefGoogle Scholar
  30. Zinner T, Mannstein H, Tafferner A (2008) Cb-TRAM: tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteorol Atmos Phys (in print)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Tafferner
    • 1
    Email author
  • C. Forster
    • 1
  • M. Hagen
    • 1
  • C. Keil
    • 1
  • T. Zinner
    • 1
  • H. Volkert
    • 1
  1. 1.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR)OberpfaffenhofenGermany

Personalised recommendations