Advertisement

Meteorology and Atmospheric Physics

, Volume 103, Issue 1–4, pp 127–136 | Cite as

Description of convective-scale numerical weather simulation use in a flight simulator within the Flysafe project

  • S. Pradier-Vabre
  • C. Forster
  • W. W. M. Heesbeen
  • C. Pagé
  • S. Sénési
  • A. Tafferner
  • I. Bernard-Bouissières
  • O. Caumont
  • A. Drouin
  • V. Ducrocq
  • Y. Guillou
  • P. Josse
Article

Summary

Within the framework of the Flysafe project, dedicated tools aiming at improving flight safety are developed. In particular, efforts are directed towards the development of the Next Generation-Integrated Surveillance System (NG-ISS), i.e. a combination of new on-board systems and ground-based tools which provides the pilot with integrated information on three risks playing a major role in aircraft accidents: collision with another aircraft, collision with terrain, and adverse weather conditions. For the latter, Weather Information Management Systems (WIMSs) based on nowcasts of atmospheric hazards are developed.

This paper describes the set-up of a test-bed for the NG-ISS incorporating two types of WIMS data, those related to aircraft in-flight icing and thunderstorm risks. The test-bed is based on convective-scale numerical simulations of a particular weather scenario with thunderstorms and icing in the area of the Innsbruck airport. Raw simulated fields as well as more elaborate diagnostics (synthetic reflectivity and satellite brightness temperature) feed both the flight simulator including the NG-ISS and the algorithms in charge of producing WIMS data. WIMS outputs based on the synthetic data are discussed, and it is indicated that the high-resolution simulated fields are beneficial for the NG-ISS test-bed purposes and its technical feasibility.

Keywords

Brightness Temperature Radar Beam Hazard Object Weather Scenario Updraft Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACARE, Advisory Council for Aeronautics Research in Europe (2002) Strategic Research Agenda 1, Vol. 2: The challenge of safety. www.acare4europe.com/html/documentation.asp
  2. Asencio, N, Stein, J, Chong, M, Gheusi, F 2003Analysis and simulation of local and regional conditions for the rainfall over the Lago Maggiore target area during MAP IOP 2bQuart J Roy Meteor Soc129565586DOI: 10.1256/qj.02.37CrossRefGoogle Scholar
  3. Bougeault, P, Binder, P, Buzzi, A, Dirks, R, Houze, R, Kuettner, J, Smith, RB, Steinacker, R, Volkert, H 2001The MAP special observing periodBull Amer Meteor Soc8234333462DOI: 10.1175/1520-0477(2001)082< 0433:TMSOP>2.3.CO;2Google Scholar
  4. Chaboureau, J-P, Bechtold, P 2005Statistical representation of clouds in a regional model, and the impact on the diurnal cycle of convection during TROCCINOXJ Geophys Res110D17103DOI: 10.1029/2004JD005645CrossRefGoogle Scholar
  5. ECMWF (2005) MARS User Guide European Center for Medium Range Weather Forecast – ECMWF, Reading, UK; Manual available at www.ecmwf.int/publications/manuals/mars/
  6. Fischer, C, Montmerle, T, Berre, L, Auger, L, Stefanescu, SE 2006An overview of the variational assimilation in the ALADIN/FRANCE NWP systemQuart J Roy Meteor Soc61334773492DOI: 10.1256/qj.05.115Google Scholar
  7. Heesbeen WWM, Ruigrok RCJ, Hoekstra J-M (2006) GRACE – a versatile simulator architecture making simulation of multiple complex aircraft simple. Proc. AIAA Modeling and Simulation Technologies Conference and Exhibit, 21–24 August 2006, Keystone, CO, USAGoogle Scholar
  8. Hering A, Sénési S, Abrosetti P, Bernard-Bouissières I (2005) Nowcasting thunderstorms in complex cases using radar data. WMO Symp. on Nowcasting and Very Short Range Forecasting, Toulouse, FranceGoogle Scholar
  9. Jaubert, G, Stein, J 2003Multiscale and unsteady aspects of a deep Foehn event during MAPQuart J Roy Meteor Soc129755776DOI: 10.1256/qj.02.38CrossRefGoogle Scholar
  10. Lafore, JP, Stein, J, Asenscio, N, Bougeault, P, Ducroq, V, Duron, J, Fischer, C, Héreil, P, Mascart, P, Masson, V, Pinty, J-P, Redelsperger, J-L, Richard, E, Vilà-Gureau de Arellano, J 1998The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulationsAnn Geophys1690109CrossRefGoogle Scholar
  11. Le Bot C (2004) SIGMA: system of icing geographic identification in meteorology for aviation. Abstracts of 11th Conf. on ARAM, AMS, Hyannis, MAGoogle Scholar
  12. Morel C, Sénési S, Autones F (2002) Building upon SAF-NWC products: use of the Rapid Developing Thunderstorms (RDT) product in Météo-France nowcasting tools. Proc., The 2002 Meteorological Satellite Data Users Conference, Eumetsat and Met. Eirean, Dublin, Ireland, pp. 248–55Google Scholar
  13. Pobanz, B, Marwitz, JD, Politovich, Marcia K. 1994Conditions Associated with large-drop regionsJ Appl Meteorol3313661372DOI: 10.1175/1520-0450(1994)033<1366: CAWLDR>2.0.CO;2CrossRefGoogle Scholar
  14. Rhoda DA, Kocab EA, Pawlak ML (2002) Aircraft Encounters with Thunderstorms in En-route vs. Terminal Airspace above Memphis, Tennessee. 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, Oregon, May 13–16, AMSGoogle Scholar
  15. Richard, E, Cosma, S, Tabary, P, Pinty, J-P, Hagen, M 2003High-resolution numerical simulations of the convective system observed in the Lago Maggiore area on 17 September 1999 (MAP IOP2a)Quart J Roy Meteor Soc129543563DOI: 10.1256/qj.02.50CrossRefGoogle Scholar
  16. Rotunno, R, Houze, RA 2007Lessons on orographic precipitationQuart J Roy Meteor Soc133811830DOI: 10.1002/qj.67CrossRefGoogle Scholar
  17. Smith, RB, Jiang, Q, Fearon, MG, Tabary, P, Dorninger, M, Doyle, JD, Benoit, R 2003Orographic precipitation and air mass transformation: an Alpine exampleQuart J Roy Meteor Soc129433454DOI: 10.1256/qj.01.212CrossRefGoogle Scholar
  18. WMO (World Meteorological Organisation)1957Meteorology: a three-dimensional science 230WMO Bull6134138Google Scholar
  19. Zinner, T, Mannstein, H, Tafferner, A 2008Cb-TRAM: tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI dataMeteorol Atmos Phys101191210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Pradier-Vabre
    • 1
  • C. Forster
    • 2
  • W. W. M. Heesbeen
    • 3
  • C. Pagé
    • 4
  • S. Sénési
    • 4
  • A. Tafferner
    • 2
  • I. Bernard-Bouissières
    • 4
  • O. Caumont
    • 1
  • A. Drouin
    • 4
  • V. Ducrocq
    • 1
  • Y. Guillou
    • 4
  • P. Josse
    • 4
  1. 1.CNRM/GAME, Météo-France/CNRSToulouseFrance
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für Physik der AtmosphäreOberpfaffenhofenGermany
  3. 3.National Aerospace Laboratory (NLR)AmsterdamThe Netherlands
  4. 4.Direction de la Prévision (Météo-France)ToulouseFrance

Personalised recommendations