Meteorology and Atmospheric Physics

, Volume 100, Issue 1–4, pp 3–22 | Cite as

Challenging some tenets of Regional Climate Modelling

  • R. Laprise
  • R. de Elía
  • D. Caya
  • S. Biner
  • P. Lucas-Picher
  • E. Diaconescu
  • M. Leduc
  • A. Alexandru
  • L. Separovic
  • Canadian Network for Regional Climate Modelling and Diagnostics


Nested Regional Climate Models (RCMs) are increasingly used for climate-change projections in order to achieve spatial resolutions that would be computationally prohibitive with coupled global climate models. RCMs are commonly thought to behave as a sort of sophisticated magnifying glass to perform dynamical downscaling, which is to add fine-scale details upon the large-scale flow provided as time-dependent lateral boundary condition.

Regional climate modelling is a relatively new approach, initiated less than twenty years ago. The interest for the approach has grown rapidly as it offers a computationally affordable means of entering into appealing applications of timely societal relevance, such as high-resolution climate-change projections and seasonal prediction. There exists however a need for basic research aiming at establishing firmly the strengths and limitations of the technique.

This paper synthesises the results of a stream of investigations on the merits and weaknesses of the nested approach, initiated almost a decade ago by some members of our team. This short paper revisits some commonly accepted notions amongst practitioners of Regional Climate Modelling, in the form of four tenets that will be challenged: (1) RCMs are capable of generating small-scale features absent in the driving fields supplied as lateral boundary conditions; (2) The generated small scales have the appropriate amplitudes and statistics; (3) The generated small scales accurately represent those that would be present in the driving data if it were not limited by resolution; (4) In performing dynamical downscaling, RCMs operate as a kind of sophisticated magnifying glass, in the sense that the small scales that are generated are uniquely defined for a given set of lateral boundary conditions (LBC). From the partial failure of the last two tenets emerges the notion of internal variability, which has often been thought to be negligible in one-way nested models due to the control exerted by the imposed lateral boundary conditions. A fifth tenet is also discussed, relating to the handling within the RCM domain of the large scales used to drive the RCM at the LBC. We close the article with an appeal to the RCM community to spend more effort in basic research in order to tackle a number of lingering issues that otherwise could jeopardize the credibility of the tool.


Regional Climate Model Internal Variabil Internal Variability Lateral Boundary Condition Dynamical Downscaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandru, A, de Elía, R, Laprise, R 2007Internal variability in regional climate downscaling at the seasonal time scaleMon Wea Rev13532213238CrossRefGoogle Scholar
  2. Anderson, CJ, Arritt, RW, Takle, ES, Pan, Z, Gutowski, WJ, da Silva, R,Jr, Caya, D, Christensen, JH, Luthi, D, Gaertenr, MA, Gallardo, C, Giorgi, F, Laprise, R, Hong, S-Y, Jones, C, Juang, H-MH, Katzfey, JJ, McGregor, JL, Lapenta, WM, Larson, JW, Taylor, JA, Liston, GE, Pielke, RA,Sr, Roads, JO 2003Hydrological processes in regional climate model Simulations of the central United States flood of June–July 1993J Hydromet4584598CrossRefGoogle Scholar
  3. Annamalai, H, Slingo, JM, Sperber, KR, Hodges, K 1999The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP-NCAR reanalysesMon Wea Rev12711571186CrossRefGoogle Scholar
  4. Anthes, RA, Kuo, Y-H, Benjamin, SG, Li, YF 1982The evolution of the mesoscale environment of severe local storms: preliminary modeling resultsMon Wea Rev11011871213CrossRefGoogle Scholar
  5. Anthes, RA, Kuo, Y-H, Baumhefner, DP, Errico, RM, Bettge, TW 1985Predictability of mesoscale atmospheric motionsAdv Geophys28b159202CrossRefGoogle Scholar
  6. Anthes, RA, Kuo, Y-H, Hsie, E-Y, Low-Nam, S, Bettge, TW 1989Estimation of skill and uncertainty in regional numerical modelsQuart J Roy Meteor Soc115763806CrossRefGoogle Scholar
  7. Antic, S, Laprise, R, Denis, B, de Elía, R 2005Testing the downscaling ability of a one-way nested regional climate model in regions of complex topographyClim Dyn23473493CrossRefGoogle Scholar
  8. Bailey, DA, Lynch, AH 2000Development of an Antarctic regional climate system model: Part 2. Station validation and surface energy balanceJ Climate1313511361CrossRefGoogle Scholar
  9. Bärring L, Laprise R (eds) (2005) High-resolution climate modelling: assessment, added value and applications. Extended Abstracts of a WMO/WCRP-sponsored regional-scale climate modelling Workshop, 29 March–2 April 2004, Lund (Sweden). Lund University electronic reports in physical geography, 132 pp (
  10. Biner S, Caya D, Laprise R, Spacek L (2000) Nesting of RCMs by imposing large scales. In: Research Activities in Atmospheric and Oceanic Modelling, WMO/TD – No. 987, Report No. 30, pp. 7.3–7.4Google Scholar
  11. Castro, CL, Pielke, RA,Sr, Leoncini, G 2005Dynamical downscaling: an assessment of value added using a regional climate modelJ Geophys Res (Atmos)110D05108DOI: 10.1029/2004JD004721CrossRefGoogle Scholar
  12. Caya, D, Laprise, R, Giguère, M, Bergeron, G, Blanchet, JP, Stocks, BJ, Boer, GJ, McFarlane, NA 1995Description of the Canadian RCMWater Air Soil Poll82477482CrossRefGoogle Scholar
  13. Caya, D, Laprise, R 1999A semi-Lagrangian semi-implicit regional climate model: the Canadian RCMMon Wea Rev127341362CrossRefGoogle Scholar
  14. Caya, D, Biner, S 2004Internal variability of RCM simulations over an annual cycleClim Dyn223346CrossRefGoogle Scholar
  15. Christensen, OB, Gaertner, MA, Prego, JA, Polcher, J 2001Internal variability of regional climate modelsClim Dyn17875887CrossRefGoogle Scholar
  16. Christensen JH, Carter TR, Rummukainen M (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change; DOI: 10.1007/s10584-006-9211-6Google Scholar
  17. Cocke, S, LaRow, TE 2000Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere modelMon Wea Rev128689708CrossRefGoogle Scholar
  18. Curry, JA, Lynch, AH 2002Comparing Arctic regional climate modelsEOS, Trans Amer Geophys Union8387Google Scholar
  19. de Elía, R, Laprise, R, Denis, B 2002Forecasting skill limits of nested, limited-area models: a perfect-model approachMon Wea Rev13020062023CrossRefGoogle Scholar
  20. de Elía, R, Laprise, R 2003Distribution-oriented verification of limited-area models forecast in a perfect-model frameworkMon Wea Rev13124922509CrossRefGoogle Scholar
  21. de Elía R, Caya D, Côté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, Plummer D (2007) Evaluation of uncertainties in the CRCM-simulated North American climate. Clim Dyn; DOI: 10.1007/s00382-007-0288-zGoogle Scholar
  22. Denis, B, Côté, J, Laprise, R 2002aSpectral decomposition of two-dimensional atmospheric fields on limited-area domains using discrete cosine transforms (DFT)Mon Wea Rev13018121829CrossRefGoogle Scholar
  23. Denis, B, Laprise, R, Caya, D, Côté, J 2002bDownscaling ability of one-way-nested regional climate models: the Big-Brother experimentClim Dyn18627646CrossRefGoogle Scholar
  24. Denis, B, Laprise, R, Caya, D 2003Sensitivity of a regional climate model to the spatial resolution and temporal updating frequency of the lateral boundary conditionsClim Dyn20107126Google Scholar
  25. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2006) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climate Change (in press)Google Scholar
  26. de Szoeke, SP, Wang, Y, Xie, S-P, Miyama, T 2006Effect of shallow cumulus convection on the eastern Pacific climate in a coupled modelGeophys Res Lett33L17713DOI: 10.1029/2006GL026715CrossRefGoogle Scholar
  27. Diaconescu, EP, Laprise, R, Sushama, L 2007The impact of lateral boundary data errors on the simulated climate of a nested Regional Climate ModelClim Dyn28333350CrossRefGoogle Scholar
  28. Dickinson, RE, Errico, RM, Giorgi, F, Bates, GT 1989A regional climate model for the western United StatesClimatic Change15383422Google Scholar
  29. Dimitrijevic, M, Laprise, R 2005Validation of the nesting technique in an RCM and sensitivity tests to the resolution of the lateral boundary conditions during summerClim Dyn25555580CrossRefGoogle Scholar
  30. Döscher, R, Willen, U, Jones, C, Rutgersson, A, Meier, HE, Hansson, U, Graham, PL 2002The development of the coupled ocean-atmosphere model RCAOBoreal Environ Res7183192Google Scholar
  31. Errico, RM 1985Spectra computed from a limited area gridMon Wea Rev11315541562CrossRefGoogle Scholar
  32. Feser, F, von Storch, H 2006A spatial two-dimensional discrete filter for limited area model evaluation purposesMon Wea Rev13317741786CrossRefGoogle Scholar
  33. Feser, F 2006Enhanced detectability of added value in limited area model results separated into different spatial scalesMon Wea Rev13421802190CrossRefGoogle Scholar
  34. Fox-Rabinovitz MS, Côté J, Dugas B, Déqué M, McGregor J, Gleckler P (2005) The international Stretched-Grid Model Intercomparison Project (SGMIP). Amer Meteor Soc (
  35. Frei, C, Christensen, JH, Déqué, M, Jacob, D, Jones, RG, Vidale, PL 2003Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European AlpsJ Geophys Res (Atmos)1084124DOI: 10.1029/2002JD002287CrossRefGoogle Scholar
  36. Fu, C, Wang, S, Xiong, Z, Gutowski, WJ, Lee, D-K, McGregor, JL, Sato, Y, Kato, H, Kim, J-W, Suh, M-S 2005Regional climate model intercomparison project for AsiaBull Amer Meteor Soc86257266CrossRefGoogle Scholar
  37. Gibelin, AL, Déqué, M 2003Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution modelClim Dyn20327339Google Scholar
  38. Giorgi, F, Bates, GT 1989The climatological skill of a regional model over complex terrainMon Wea Rev11723252347CrossRefGoogle Scholar
  39. Giorgi, F, Bi, X 2000A study of internal variability of a regional climate modelJ Geophys Res1052950329521CrossRefGoogle Scholar
  40. Giorgi, F, Mearns, LO 1991Approaches to the simulation of regional climate change: a reviewRev Geophys29191216CrossRefGoogle Scholar
  41. Herceg, D, Sobel, AH, Sun, L, Zebiak, SE 2006The big brother experiment and seasonal predictability in the NCEP regional spectral modelClim Dyn26114 Scholar
  42. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  43. Jones, RG, Murphy, JM, Noguer, M 1995Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundariesQuart J Roy Meteor Soc12114131449Google Scholar
  44. Jones, RG, Murphy, JM, Noguer, M, Keen, AB 1997Simulation of climate change over Europe using a nested regional climate model. Part II: Comparison of driving and regional model responses to a doubling of carbon dioxideQuart J Roy Met Soc123265292Google Scholar
  45. Juang, H-MH, Hong, S-Y 2001Sensitivity of the NCEP regional spectral model to domain size and nesting strategyMon Wea Rev12929042922CrossRefGoogle Scholar
  46. Kuo, H-C, Williams, RT 1992Boundary effects in regional spectral modelsMon Wea Rev12029862992CrossRefGoogle Scholar
  47. Kuo, H-C, Williams, RT 1998Scale-dependent accuracy in regional spectral modelsMon Wea Rev12626402647CrossRefGoogle Scholar
  48. Laprise, R, Caya, D, Giguère, M, Bergeron, G, Côté, H, Blanchet, J-P, Boer, GJ, McFarlane, NA 1998Climate and climate change in Western Canada as simulated by the Canadian regional climate modelAtmos OceanXXXVI119167Google Scholar
  49. Laprise, R, RaviVarma, M, Denis, B, Caya, D, Zawadzki, I 2000Predictability in a nested limited-area modelMon Wea Rev12841494154CrossRefGoogle Scholar
  50. Laprise R, Jones R, Kirtman B, von Storch H, Wergen W (2002) Atmospheric regional climate models (RCMs): a multiple purpose tool? Report of the Joint WGNE/WGCM ad hoc panel on regional climate modelling, 19 pp (available from the corresponding author)Google Scholar
  51. Laprise, R, Caya, D, Frigon, A, Paquin, D 2003Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North AmericaClim Dyn21405421CrossRefGoogle Scholar
  52. Laprise, R 2003Resolved scales and nonlinear interactions in limited-area modelsJ Atmos Sci60768779CrossRefGoogle Scholar
  53. Laprise R (2008) Regional climate modelling. J Comp Phys, 227, Special issue on Predicting Weather, Climate and Extreme Events (by invitation), 3641–3666Google Scholar
  54. Leduc M, Laprise R (2008) Regional Climate Model sensitivity to domain size. Clim Dyn (accepted)Google Scholar
  55. Lorenz, P, Jacob, D 2005Influence of regional scale information on the global circulation: a two-way nesting climate simulationGeophys Res Lett32L18706DOI: 10.1029/2005GLO23351CrossRefGoogle Scholar
  56. Lucas-Picher P, Caya D, de Elía R, Laprise R (2008) Investigation of regional climate models’ internal variability with a ten-member ensemble of ten years over a large domain. Clim Dyn (accepted); DOI: 10.1007/s00382-003-0384-8Google Scholar
  57. McGregor, JL 1997Regional climate modellingMeteorol Atmos Phys63105117CrossRefGoogle Scholar
  58. McGregor JL, Nguyen KC, Katzfey JJ (2002) Regional climate simulations using a stretched-grid global model. In: Ritchie H (ed) Research activities in atmospheric and oceanic modelling. Report No. 32, WMO/TD – No. 1105, pp. 3.15–16Google Scholar
  59. Mearns LO, Arritt R, Boer G, Caya D, Duffy P, Giorgi F, Gutowski WJ, Held IM, Jones R, Laprise R, Leung LR, Pal J, Roads R, Sloan L, Stouffer R, Takle G, Washington W (2005) NARCCAP – North American Regional Climate Change Assessment Program: A Multiple AOGCM and RCM Climate Scenario Project over North America. Preprints of the Amer. Meteor. Soc. 16th Conf. on Climate Variations and Change. 9–13 January 2005. Paper J6.10, pp. 235–8Google Scholar
  60. Meehl, GA, Boer, GJ, Covey, C, Latif, M, Stouffer, RJ 2000The coupled model intercomparison project (CMIP)Bull Amer Meteor Soc81313318CrossRefGoogle Scholar
  61. Mesinger F, Brill K, Chuang H, DiMego G, Rogers E (2002) Limited area predictability: can upscaling also take place? Research activities in atmospheric and oceanic modelling. Report No. 32, WMO/TD – No. 1105, pp. 5.30–1Google Scholar
  62. Miguez-Macho, G, Stenchikov, GL, Robock, A 2004Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulationsJ Geophys Res109D13104DOI: 10.1029/2003JD004495CrossRefGoogle Scholar
  63. Miyakoda, K, Rosati, A 1977One-way nested grid models: the interface conditions and the numerical accuracyMon Wea Rev10510921107CrossRefGoogle Scholar
  64. New, M, Hulme, M, Jones, P 2000Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climateJ Clim1322172238CrossRefGoogle Scholar
  65. Nutter, P, Stensrud, D, Xue, M 2004Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecastsMon Wea Rev13223582377CrossRefGoogle Scholar
  66. Riette S, Caya D (2002) Sensitivity of short simulations to the various parameters in the new CRCM spectral nudging. In: Ritchie H (ed) Research activities in atmospheric and oceanic modelling. WMO/TD – No 1105, Report No. 32, pp. 7.39–40Google Scholar
  67. Rinke, A, Dethloff, K 2000On the sensitivity of a regional Arctic climate model to initial and boundary conditionsClim Res14101113CrossRefGoogle Scholar
  68. Rinke, A, Gerdes, R, Dethloff, K, Kandlbinder, T, Karcher, M, Kauker, F, Frickenhaus, S, Köberle, C, Hiller, W 2003A case study of the anomalous Arctic sea ice conditions during 1990: insights from coupled and uncoupled regional climate model simulationsJ Geophys Res1084275DOI: 10.1029/2002JD003146CrossRefGoogle Scholar
  69. Rinke, A, Marbaix, P, Dethloff, K 2004Internal variability in Arctic regional climate simulations: case study for the SHEBA yearClim Res27197209CrossRefGoogle Scholar
  70. Rinke, A, Dethloff, K, Cassano, JJ, Christensen, JH, Curry, JA, Du, P, Girard, E, Haugen, J-E, Jacob, D, Jones, CG, Køltzow, M, Laprise, R, Lynch, AH, Pfeifer, S, Serreze, MC, Shaw, MJ, Tjernström, M, Wyser, K, Zagar, M 2005Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA yearClim Dyn26459472DOI: 10.1007/s00382-005-0095-3CrossRefGoogle Scholar
  71. Sasaki, H, Kurihara, K, Takayabu, I, Murazaki, K, Sato, Y, Tsujino, H 2006Preliminary results from the coupled atmosphere-ocean regional climate model developed at Meteorological Research InstituteJ Meteor Soc Japan84389403CrossRefGoogle Scholar
  72. Segami, A, Kurihara, K, Nakamura, H, Ueno, M, Takano, I, Tatsumi, Y 1989Operational mesoscale weather prediction with Japan spectral modelJ Meteor Soc Japan67907923Google Scholar
  73. Seo, KH, Schemm, JKE, Wang, W, Kumar, A 2007The boreal summer intraseasonal oscillation simulated in the NCEP climate forecast system: the effect of sea surface temperatureMon Wea Rev13518071827CrossRefGoogle Scholar
  74. Separovic L, de Elía R, Laprise R (2008) Reproducible and irreproducible components in ensemble simulations of a regional climate model. Clim Dyn (accepted)Google Scholar
  75. Staniforth, A 1997Regional modelling: a theoretical discussionMeteorol Atmos Phys631529CrossRefGoogle Scholar
  76. Stowasser, M, Wang, Y, Hamilton, K 2007Tropical cyclone changes in the Western North Pacific in a global warming scenarioJ Climate2023782396CrossRefGoogle Scholar
  77. Takle, ES, Gutowski, WJ,Jr, Arritt, RW, Pan, Z, Anderson, CJ, Silva, R, Caya, D, Chen, S-C, Christensen, JH, Hong, S-Y, Juang, H-MH, Katzfey, JJ, Lapenta, WM, Laprise, R, Lopez, P, McGregor, J, Roads, JO 1999Project to intercompare regional climate simulations (PIRCS): description and initial resultsJ Geophys Res10419,44319,462CrossRefGoogle Scholar
  78. Tatsumi, Y 1986A spectral limited-area model with time dependent lateral boundary conditions and its application to a multi-level primitive equation modelJ Meteor Soc Japan64637663Google Scholar
  79. Vanvyve E, Hall N, Messager C, Leroux S, van Ypersele J-P (2007) Internal variability in a regional model over West Africa. Clim Dyn; DOI: 10.1007/s00382-007-0281-6Google Scholar
  80. von Storch, H, Langenberg, H, Feser, F 2000A spectral nudging technique for dynamical downscaling purposesMon Wea Rev12836643673CrossRefGoogle Scholar
  81. Wang, Y, Sen, OL, Wang, B 2003A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulationJ Climate1617211738CrossRefGoogle Scholar
  82. Wang, Y, Leung, LR, McGregor, JL, Lee, D-K, Wang, W-C, Ding, Y, Kimura, F 2004Regional climate modelling: progress, challenges, and prospectsJ Meteor Soc Japan8215991628CrossRefGoogle Scholar
  83. Warner, TT, Peterson, RA, Treadon, RE 1997A tutorial on lateral conditions as a basic and potentially serious limitation to regional numerical weather predictionBull Amer Meteor Soc7825992617CrossRefGoogle Scholar
  84. WGNE (1999) Report of Fourteenth Session of the CAS/JSC Working Group on Numerical Experimentation (Recherche en Prévision Numérique, Environment Canada, Dorval Québec, Canada, 2–6 November 1998), Report No. 14, WMO/TD – No. 964, World Meteor. Org., 28 ppGoogle Scholar
  85. WGNE (2000) Report of Fifteenth Session of the CAS/JSC Working Group on Numerical Experimentation (Naval Research Laboratory, Monterey, CA, USA, 25–29 October 1999), Report No. 15, WMO/TD – No. 1024, World Meteor. Org., 29 ppGoogle Scholar
  86. Weisse, R, Heyen, H, von Storch, H 2000Sensitivity of a regional atmospheric model to a sea state-dependent roughness and the need for ensemble calculationsMon Wea Rev12836313642CrossRefGoogle Scholar
  87. Wu, W, Lynch, AH, Rivers, A 2005Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditionsJ Climate18917933CrossRefGoogle Scholar
  88. Xie, SP, Miyama, T, Wang, Y, Xu, H, de Szoeke, SP, Small, RJO, Richards, KJ, Mochizuki, T, Awaji, T 2007A regional ocean-atmosphere model for eastern pacific climate: toward reducing tropical biasesJ Climate2015041522CrossRefGoogle Scholar
  89. Yeh, KS, Côté, J, Gravel, S, Méthot, A, Patoine, A, Roch, M, Staniforth, A 2002The CMC–MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulationMon Wea Rev130339356CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Laprise
    • 1
  • R. de Elía
    • 1
    • 2
  • D. Caya
    • 1
    • 2
  • S. Biner
    • 2
  • P. Lucas-Picher
    • 1
  • E. Diaconescu
    • 1
  • M. Leduc
    • 1
  • A. Alexandru
    • 1
  • L. Separovic
    • 1
  • Canadian Network for Regional Climate Modelling and Diagnostics
  1. 1.Université du QuébecMontréalCanada
  2. 2.Consortium OuranosMontréalCanada

Personalised recommendations