Meteorology and Atmospheric Physics

, Volume 101, Issue 3–4, pp 245–265 | Cite as

Discharge prediction based on multi-model precipitation forecasts

  • T. Diomede
  • S. Davolio
  • C. Marsigli
  • M. M. Miglietta
  • A. Moscatello
  • P. Papetti
  • T. Paccagnella
  • A. Buzzi
  • P. Malguzzi


In the field of hydrological prediction for medium-sized watersheds, characterized by complex orography and short response times, forecasts cannot rely only upon observed precipitation: predicted rainfall is in this case an essential input for hydrological models. However, the quality and reliability of deterministic numerical precipitation forecasts driving a hydrological model are often unsatisfactory, because uncertainty in Quantitative Precipitation Forecasts (QPFs) is considerable at the scales of interest for hydrological purposes. The uncertainty inherent in precipitation forecast can be accounted for better estimating the uncertainty associated with the flood forecast, in order to provide a more informative hydrological prediction.

The methodology proposed and adopted in this work is based on a hydrological ensemble forecasting approach that uses multiple precipitation scenarios provided by different high-resolution numerical weather prediction models, driving the same hydrological model. In this way, the uncertainty associated with the meteorological forecasts can propagate into the hydrological models and be used in warnings and decision making procedures relying upon a probabilistic approach.

In the framework of RISK AWARE, an INTERREG III B EU project, a detailed analysis of two cases of intense precipitation affecting the Reno river basin, a medium-sized catchment in northern Italy, has been performed. One case study has been performed using lateral boundary values derived from analysed fields, the other simulating a real time forecast, i.e., using forecasted boundary conditions. Four different meteorological models (Lokal Modell, RAMS, BOLAM and MOLOCH), operating at different horizontal resolutions, provide QPFs which are used to force the hydrological model. The discharge predictions are obtained by means of the physically based rainfall-runoff model TOPKAPI.

The results provide examples of the uncertainties inherent in the QPF and show that the hydrological response of the Reno river basin, as simulated by the TOPKAPI model, is highly sensitive to the correct space-time localization of precipitation, even if the total amount of rainfall is, on average, well forecasted. The system seems able to provide useful information concerning the discharge peaks (amount and timing) for warning purposes.


Digital Elevation Model Hydrological Model Ensemble Forecast Precipitation Forecast Meteorological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacchi, B, Ranzi, R 2003Hydrological and meteorological aspects of floods in the Alps: an overviewHydrol Earth Sys Sci7785798Google Scholar
  2. Benoit, R, Pellerin, P, Kouwen, N, Ritchie, H, Donaldson, N, Joe, P, Soulis, E 2000Toward the use of coupled atmospheric and hydrologic models at regional scaleMon Wea Rev12816811706CrossRefGoogle Scholar
  3. Benoit, R, Kouwen, N, Yu, W, Chamberland, S, Pellerin, P 2003Hydrometeorological aspects of the real-time ultrafinescale forecast support during the special observing period of the MAPHydrol Earth Sys Sci7877889Google Scholar
  4. Beven, K, Lamb, R, Quinn, P, Romanowicz, R, Freer, J 1995TOPMODELSingh, VP eds. Computer models of watershed hydrologyWater Resources PublicationsLittleton, CO, USA1144Google Scholar
  5. Billet, S, Toro, EF 1997On WAF-type schemes for multidimensional hyperbolic conservation lawsJ Comput Phys130124CrossRefGoogle Scholar
  6. Bougeault, P, Binder, P, Buzzi, A, Dirks, R, Houze, R, Kuettner, J, Smith, RB, Steinacker, R, Volkert, H 2001The MAP special observing periodBull Amer Met Soc82433462CrossRefGoogle Scholar
  7. Butts MB (2000) Coupling of catchment modelling and meteorological information in flow forecasting. PIK Report no. 65. In: Bronsert A, Bismuth C, Menzel C (eds) Proc. of European Conf. on Advances in Flood Research. Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany, pp. 476–87Google Scholar
  8. Buzzi, A, D’Isidoro, M, Davolio, S 2003A case study of an orographic cyclone south of the Alps during the MAP SOPQ J R Meteorol Soc12917951818CrossRefGoogle Scholar
  9. Buzzi, A, Davolio, S, D’Isidoro, M, Malguzzi, P 2004The impact of resolution and of 4-D Var reanalysis on the simulations of heavy precipitation in MAP casesMeteor Z139197CrossRefGoogle Scholar
  10. Davolio, S, Buzzi, A 2004A nudging scheme for the assimilation of precipitation data into a mesoscale modelWea Forecast19855871CrossRefGoogle Scholar
  11. Drofa OV, Malguzzi P (2004) Parameterization of microphysical processes in a non hydrostatic prediction model. Proc. 14th Int. Conf. on Clouds and Precipitation (ICCP). Bologna, Italy, pp. 1297–300Google Scholar
  12. Ferraris, L, Rudari, R, Siccardi, F 2002The uncertainty in the prediction of flash floods in the northern mediterranean environmentJ Hydrometeorol3714727CrossRefGoogle Scholar
  13. Gerlinger K, Demuth N (2000) Operational flood forecasting for the Moselle river basin. PIK Report no. 65. In: Bronsert A, Bismuth C, Menzel C (eds) Proc. of European Conf. On Advances in Flood Research. Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany, pp. 562–73Google Scholar
  14. Hamill T, Clark M, Schaake J, Buizza R (2005) 2nd HEPEX Workshop Summary Report, Boulder, CO (
  15. Jasper, K, Kaufmann, P 2003Coupled runoff simulations as validation tools for atmospheric models at the regional scaleQ J R Meteorol Soc129673693CrossRefGoogle Scholar
  16. Jasper K, Gurtz J, Lang H, Kaufmann P, Binder P (2000) Flood forecast by coupling meteorological and hydrological models at regional scale. PIK Report no. 65. In: Bronsert A, Bismuth C, Menzel C (eds) Proc. of European Conf. on Advances in Flood Research. Potsdam-Institut für Klimafolgenforschung, Potsdam, Germany, pp. 426–39Google Scholar
  17. Kain, JS 2004The Kain-Fritsch convective parametrization: an updateJ App Meteorol43170181CrossRefGoogle Scholar
  18. Keil C, Cardinali C (2003) The ECMWF Re-Analysis of the Mesoscale Alpine Programme Special Observing Period. ECMWF Internal Memorandum 401, 34 ppGoogle Scholar
  19. Krzysztofowicz, R 1999Bayesian theory of probabilistic forecasting via deterministic hydrologic modelWater Resour Res3527392750CrossRefGoogle Scholar
  20. Kunstmann H, Stadler C (2003) Operational high resolution meteorological and hydrological analysis as decision support system in integrated water resources management. In: Görgens A et al. (eds) IAHS Redbook “Integrated Water Resources Management: Towards Sustainable Water Utilization in the 21st Century”Google Scholar
  21. Kuo, HL 1974Further studies of the parameterization of the influence of cumulus convection on large scale flowJ Atmos Sci3112321240CrossRefGoogle Scholar
  22. Kwadijk J (2003) EFFS – European Flood Forecasting System. Final report of Contract EVG1-CT-1999-00011 (
  23. Liniger, MA, Davies, HC 2003Substructure of a MAP streamerQ J R Meteorol Soc129633651CrossRefGoogle Scholar
  24. Liu, Z, Todini, E 2002Towards a comprehensive physically-based rainfall-runoff modelHydrol Earth Sys Sci6859881Google Scholar
  25. Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the PBL parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization. Reading, UK, pp. 25–7Google Scholar
  26. Mahrer, Y, Pielke, RA 1977A numerical study of the airflow over irregular terrainBeiträge zur Physik der Atmosphäre5098113Google Scholar
  27. Mariani, S, Casaioli, M, Accadia, C, Llasat, MC, Pasi, F, Davolio, S, Elementi, M, Ficca, G, Romero, R 2005A limited area model intercomparison on the “Montserrat-2000” flash-flood event using statistical and deterministic methodsNat Hazards Earth Sys Sci5565581Google Scholar
  28. Marsigli, C, Montani, A, Nerozzi, F, Paccagnella, T, Tibaldi, S, Molteni, F, Buizza, R 2001A strategy for high-resolution ensemble prediction. II: Limited-area experiments in four Alpine flood eventsQ J R Meteorol Soc12720952115CrossRefGoogle Scholar
  29. Mass, CF, Ovens, D, Westrick, K 2002Does increasing horizontal resolution produce more skillful forecasts?Bull Amer Met Soc83407430CrossRefGoogle Scholar
  30. Melone F, Barbetta S, Diomede T, Peruccacci S, Rossi M, Tessarollo A, Verdecchia M (2005) Review and selection of hydrological models – integration of hydrological models and meteorological inputs. Resulting from Work package 1, Action 13, RISK AWARE – INTERREG III B – CADSES, p. 34Google Scholar
  31. Meyers, MP, Walko, RL, Harrington, J, Cotton, WR 1997New RAMS cloud microphysics parameterization: Part II. The two-moment schemeAtmos Res45339CrossRefGoogle Scholar
  32. Molteni, F, Buizza, R, Marsigli, C, Montani, A, Nerozzi, F, Paccagnella, T 2001A strategy for high-resolution ensemble prediction: Part I. Definition of representative members and global-model experimentsQ J R Meteorol Soc12720692094CrossRefGoogle Scholar
  33. Morcrette JJ, Clough SA, Mlawer EJ, Iacono MJ (1998) Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts. ECMWF Technical Memo 252, 47 ppGoogle Scholar
  34. Nash, JE, Sutcliffe, JV 1970River flow forecasting through conceptual models: Part I. A discussion of principlesJ Hydrol10282290CrossRefGoogle Scholar
  35. Obled C, Djerboua A, Zin I, Garçon R (2004) A simple probabilistic flood forecasting chain with focus on the use of QPF’s. In: Brath A, Montanari A, Toth E (eds) Proc. ESF LESC 53 Exploration Workshop, Bologna. Hydrological risk – recent advances in peak river flow modelling, prediction and real-time forecasting – assessment of the impacts of land-use and climate changes. Editoriale Bios, Castrolibero, CS, Italy, pp. 168–85Google Scholar
  36. Pielke, RA, Cotton, WR, Walko, RL, Tremback, CJ, Lyons, WA, Grasso, LD, Nicholls, ME, Moran, MD, Wesley, DA, Lee, TJ, Copeland, JH 1992A comprehensive meteorological modeling system – RAMSMeteor Atmos Phys496991CrossRefGoogle Scholar
  37. Ranzi R, Bacchi B, Grossi G, Buzzi A, Malguzzi P, Ratto C, Corazza M (2000) Previsioni di piena mediante un modello idrologico e un modello meteorologico ad area limitata: alcune esperienze applicative durante l’esperimento MAP-SOP. Atti del XXVII Convegno di Idraulica e Costruzioni Idrauliche, Genova, 12–15 settembre 2000, Vol. II, pp. 385–93Google Scholar
  38. Richardson D (2002) Will it rain? Predictability, risk assessment and the need for ensemble forecasts. CBS Technical Conference on DPFS, Cairns, Australia (
  39. Ritter, B, Geleyn, JF 1992A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulationsMon Wea Rev120303325CrossRefGoogle Scholar
  40. Rossa A (2004) Propagation of uncertainty in advanced meteo-hydrological forecast systems: proposal for a new COST Action – Technical annex COST 731, 160th CSO Meeting (
  41. Šahdan, SI, Tudor, M 2004Use of high-resolution dynamical adaptation in operational suite and research impact studiesMeteorol Z1399108CrossRefGoogle Scholar
  42. Schaake J (2004) Proposal for an international Hydrological Ensemble Prediction Experiment (HEPEX). 1st Workshop on the Hydrological Ensemble Prediction Experiment (HEPEX), Reading, UK (http://www.
  43. Siccardi F, Boni G, Ferraris L, Rudari R (2005) A hydrometeorological approach for probabilistic flood forecast. J Geoph Res 110: D05101; DOI: 10.1029/2004JD005314Google Scholar
  44. Steppeler, J, Doms, G, Schättler, U, Bitzer, HW, Gassmann, A, Damrath, U, Gregoric, G 2003Meso-gamma scale forecasts using the non-hydrostatic model LMMeteorol Atmos Phys827596CrossRefGoogle Scholar
  45. Tibaldi, S, Paccagnella, T, Marsigli, C, Montani, A, Nerozzi, F 2006Limited-area ensemble forecasting: the COSMO-LEPS systemCambridge University PressCambridge, NYGoogle Scholar
  46. Tiedtke, M 1989A comprehensive mass flux scheme for cumulus parameterization in large-scale modelsMon Wea Rev11717791799CrossRefGoogle Scholar
  47. Todini E (1995) AFORISM – a comprehensive forecasting system for flood risk mitigation and control. Final report of Contract EPOC-CT90-0023Google Scholar
  48. Todini, E 1996The ARNO rainfall-runoff modelJ Hydrol175339382CrossRefGoogle Scholar
  49. Todini, E, Ciarapica, L 2002The TOPKAPI modelSingh, VPFrevert, DK eds. Mathematical models of large watershed hydrologyWater Resources PublicationsLittleton, CO914Google Scholar
  50. Tomassetti, B, Coppola, E, Verdecchia, M, Visconti, G 2005Coupling a distributed grid based hydrological model and MM5 Meteorological model for flooding alert mappingEGU Adv Geosci25963CrossRefGoogle Scholar
  51. Walko, RL, Band, LE, Baron, J, Kittel, TGF, Lammers, R, Lee, TJ, Ojima, D, Pielke, RA, Taylor, C, Tague, C, Tremback, CJ, Vidale, PL 2000Coupled atmosphere-biophysicshydrology models for environmental modelingJ Appl Meteorol39931944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. Diomede
    • 1
  • S. Davolio
    • 2
  • C. Marsigli
    • 1
  • M. M. Miglietta
    • 3
  • A. Moscatello
    • 3
  • P. Papetti
    • 1
  • T. Paccagnella
    • 1
  • A. Buzzi
    • 2
  • P. Malguzzi
    • 2
  1. 1.Regional Hydro-Meteorological Service, ARPA-SIMBolognaItaly
  2. 2.Institute of Atmospheric Sciences and ClimateISAC-CNRBolognaItaly
  3. 3.Institute of Atmospheric Sciences and ClimateISAC-CNRLecceItaly

Personalised recommendations