Meteorology and Atmospheric Physics

, Volume 99, Issue 3–4, pp 181–198 | Cite as

Evolution of the atmospheric boundary-layer structure of an arid Andes Valley

  • S. Khodayar
  • N. Kalthoff
  • M. Fiebig-Wittmaack
  • M. Kohler


The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley.

Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night.

The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer.


Cloud Layer Moisture Budget Subtropical Anticyclone Meteorol Atmos Phys Valley Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry, RG 1992Mountain weather and climateRoutledgeLondon402Google Scholar
  2. Caughey SJ (1982) Observed characteristics of the atmospheric boundary layer. In: Nieuwstadt FTM, van Dop H (eds) Atmospheric turbulence and air pollution modelling. Reidel, Dordrecht, Holland, pp. 107–58Google Scholar
  3. Freytag, C 1985MERKUR-results: aspects of the temperature field and the energy budget in a large alpine valley during mountain and valley windContr Atmos Phys58458476Google Scholar
  4. Gamo, M 1996Thickness of the dry convection and large-scale subsidence above desertsBound Layer Meteorol79265278CrossRefGoogle Scholar
  5. Garratt, JR 1994The atmospheric boundary layerCambridge University PressCambridge316Google Scholar
  6. Grunwald, J, Kalthoff, N, Corsmeier, U, Fiedler, F 1996Comparison of areally averaged turbulent fluxes over non-homogeneous terrain: results from the EFEDA-field experimentBound Layer Meteorol77105134CrossRefGoogle Scholar
  7. Hennemuth, B 1985Temperature field and energy budget of a small alpine valleyContr Atmos Phys58545559Google Scholar
  8. Hennemuth, B, Neureither, I 1986Das Feuchtefeld in einem alpinen EndtalMeteorol Rdsch39233239Google Scholar
  9. Horst, TW, Doran, JC 1986Nocturnal drainage flow on simple slopesBound Layer Meteorol34263286CrossRefGoogle Scholar
  10. Kalthoff, N, Horlacher, V, Corsmeier, U, Volz-Thomas, A, Kolahgar, B, Geiß, H, Möllmann-Coers, M, Knaps, A 2000Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland areaJ Geophys Res10515851597CrossRefGoogle Scholar
  11. Kalthoff, N, Bischoff-Gauß, I, Fiebig-Wittmaack, M, Fiedler, F, Thürauf, J, Novoa, E, Pizarro, C, Castillo, R, Gallardo, L, Rondanelli, R, Kohler, M 2002Mesoscale wind regimes in Chile at 30° SJ Appl Meteorol41953970CrossRefGoogle Scholar
  12. Kalthoff, N, Fiebig-Wittmaack, M, Meißner, C, Kohler, M, Uriarte, M, Bischoff-Gauß, I 2006The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the AndesJ Arid Environ65420443CrossRefGoogle Scholar
  13. Kossmann, M, Fiedler, F 2000Diurnal momentum budget analysis of thermally induced slope windsMeteorol Atmos Phys75195215CrossRefGoogle Scholar
  14. Kossmann, M, Sturman, AP, Zawar-Reza, P, McGowan, HA, Oliphant, AJ, Owens, IF, Spronken-Smith, RA 2002Analysis of the wind field and heat budget in an alpine lake basin during summertime fair weather conditionsMeteorol Atmos Phys812752CrossRefGoogle Scholar
  15. Kraus H (1970) Die Energieumsätze in der bodennahen Atmosphäre. Offenbach a. M., Berichte des Deutschen Wetterdienstes N 117, 43 ppGoogle Scholar
  16. Kuwagata, T, Kondo, J, Sumioka, M 1994Thermal effect of the sea breeze on the structure of the boundary layer and the heat budget over landBound Layer Meteorol67119144CrossRefGoogle Scholar
  17. Mayer, B, Kylling, A 2005Technical note: the libRadtran software package for radiative transfer calculations – description and examples of useAtmos Chem Phys518551877CrossRefGoogle Scholar
  18. McGowan, HA, Sturman, AP 2005Atmospheric boundary layer development over a narrow coastal plain during onshore flowMeteorol Z14314CrossRefGoogle Scholar
  19. Miller, A 1976The climate of ChileSchwerdtfeger, W eds. Climates of Central and South AmericaElsevier Scientific Publ.Amsterdam113145Google Scholar
  20. Neininger, B 1982Mesoklimatische Messungen im OberwallisAnn Meteor N F19105107Google Scholar
  21. Olivares, S, Squeo, F 1999Patrones fenológicos en especies arbustivas del desierto costero del norte-centro de ChileRevista Chilena de Historia Natural72353370Google Scholar
  22. Rutllant, J, Ulriksen, P 1979Boundary-layer dynamics of the extremely arid northern part of Chile: the Antofagasta field experimentBound Layer Meteorol174155CrossRefGoogle Scholar
  23. Schemenauer, RS, Cereceda, P, Carvjal, N 1987Measurements of fog water deposition and their relationships to terrain featuresJ Clim Appl Meteorol2612851291CrossRefGoogle Scholar
  24. Schemenauer, RS, Fuenzalida, PH, Cereda, P 1988A neglected water resource: the Camanchaca of South AmericaBull Amer Meteor Soc69138147CrossRefGoogle Scholar
  25. Squeo, F, Osorio, R, Arancio, G 1994Flora de Los Andes de Coquimbo: Cordillera de Doña AnaEdiciones Universidad de La SerenaLa Serena168Google Scholar
  26. Steinacker, R 1984Area-height distribution of a valley and its relation to the valley windContr Atmos Phys576471Google Scholar
  27. Stull, RB 1988Introduction to Boundary Layer MeteorologyKluwer Academic PressDordrecht666Google Scholar
  28. Vergeiner, I, Dreiseitl, E 1987Valley winds and slope winds – observations and elementary thoughtsMeteorol Atmos Phys36264286CrossRefGoogle Scholar
  29. Warner, T 2004Desert meteorologyCambridge University PressCambridge595Google Scholar
  30. Weischet W (1996) Regionale Klimatologie, Teil 1. Die Neue Welt: Amerika, Neuseeland, Australien. Teubner, Stuttgart, 468 ppGoogle Scholar
  31. Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen (ed) Atmospheric processes over complex terrain. Meteorological monographs 23. Amer Meteor Soc, Boston, pp. 5–42Google Scholar
  32. Whiteman, CD, McKee, TB, Doran, JC 1996Boundary layer evolution within a canyonland basin. Part I: Mass, heat, and moisture budgets from observationsJ Appl Meteorol3521452161CrossRefGoogle Scholar
  33. Whiteman, CD, Zhong, S, Bian, X, Fast, JD, Doran, JC 2000Boundary layer evolution and regional-scale diurnal circulations over the Mexico basin and Mexican plateauJ Geophys Res1051008110102CrossRefGoogle Scholar
  34. Zangvil, A 1996Six years of dew observations in the Negev Desert, IsraelJ Arid Environ32361371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. Khodayar
    • 1
  • N. Kalthoff
    • 1
  • M. Fiebig-Wittmaack
    • 2
  • M. Kohler
    • 1
  1. 1.Institute for Meteorology and Climate ResearchKarlsruhe Research Centre/University of KarlsruheKarlsruheGermany
  2. 2.Centro de Estudios Avanzados en Zonas ÁridasUniversidad de La SerenaLa SerenaChile

Personalised recommendations