Meteorology and Atmospheric Physics

, Volume 98, Issue 3–4, pp 239–267 | Cite as

Rainfall thresholds for the initiation of landslides in central and southern Europe

  • F. Guzzetti
  • S. Peruccacci
  • M. Rossi
  • C. P. Stark


We review rainfall thresholds for the initiation of landslides world wide and propose new empirical rainfall thresholds for the Central European Adriatic Danubian South-Eastern Space (CADSES) area, located in central and southern Europe. One-hundred-twenty-four empirical thresholds linking measurements of the event and the antecedent rainfall conditions to the occurrence of landslides are considered. We then describe a database of 853 rainfall events that resulted or did not result in landslides in the CADSES area. Rainfall and landslide information in the database was obtained from the literature; climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. We plot the intensity-duration values in logarithmic coordinates, and we establish that with increased rainfall duration the minimum intensity likely to trigger slope failures decreases linearly, in the range of durations from 20 minutes to ∼12 days. Based on this observation, we determine minimum intensity-duration (ID) and normalized-ID thresholds for the initiation of landslides in the CADSES area. Normalization is performed using two climatic indexes, the mean annual precipitation (MAP) and the rainy-day-normal (RDN). Threshold curves are inferred from the available data using a Bayesian statistical technique. Analysing the obtained thresholds we establish that lower average rainfall intensity is required to initiate landslides in an area with a mountain climate, than in an area characterized by a Mediterranean climate. We further suggest that for rainfall periods exceeding ∼12 days landslides are triggered by factors not considered by the ID model. The obtained thresholds can be used in operation landslide warning systems, where more accurate local or regional thresholds are not available.


Rainfall Intensity Slope Failure Shallow Landslide Rainfall Threshold Landslide Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M, Stegun, IA 1972Handbook of mathematical functions with formulas, graphs, and mathematical tables10WileyNew York1046Google Scholar
  2. Ahmad R (2003) Developing early warning systems in Jamaica: rainfall thresholds for hydrological hazards. National Disaster Management Conf., Ocho Rios, St Ann, Jamaica, 9–10 September 2003.
  3. Aleotti, P 2004A warning system for rainfall-induced shallow failuresEng Geol73247265CrossRefGoogle Scholar
  4. Aleotti, P, Baldelli, P, Bellardone, G, Quaranta, N, Tresso, F, Troisi, C, Zani, A 2002Soil slips triggered by October 13–16, 2000 flooding event in the Piedmont Region (Northwest Italy): critical analysis of rainfall dataGeologia Tecnica e Ambientale11525Google Scholar
  5. Annunziati A, Focardi A, Focardi P, Martello S, Vannocci P (2000) Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps – Tuscany, Italy (19 June 1996 storm). In: Proc. EGS Plinius Conf. on Mediterranean Storms, Maratea, Italy, pp 485–493Google Scholar
  6. Arboleda, RA, Martinez, ML 19961992 lahars in the Pasig-Potrero River systemNewhall, CGPunongbayan, RS eds. Fire and mud: eruptions and lahars of Mount PinatuboQuezon City and University of Washington PressSeattle1126Google Scholar
  7. Ayalew, L 1999The effect of seasonal rainfall on landslides in the highlands of EthiopiaBull Eng Geol Env58919CrossRefGoogle Scholar
  8. Bacchini, M, Zannoni, A 2003Relations between rainfall and triggering of debris-flow: a case study of Cancia (Dolomites, Northeastern Italy)Nat Hazard Earth Sys37179CrossRefGoogle Scholar
  9. Barbero S, Rabuffetti D, Zaccagnino M (2004) Una metodologia per la definizione delle soglie pluviometriche a supporto dell’emissione dell’allertamento. In: Proc. 29th Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Trento, 7–10 September 2004, pp 211–217Google Scholar
  10. Baum RL, Godt JW, Harp EL, McKenna JP (2005) Early warning of landslides for rail traffic between Seattle and Everett, Washington. In: Proc. 2005 Int. Conf. on Landslide Risk Management (Hungr O, Fell R, Couture R, Eberhardt E, eds). New York: A.A. Balkema, pp 731–740Google Scholar
  11. Bell, FG, Maud, RR 2000Landslides associated with the colluvial soils overlying the Natal Group in the greater Durban region of Natal, South AfricaEnviron Geol3910291038CrossRefGoogle Scholar
  12. Bhandari RK (1984) Simple and economical instrumentation and warning systems for landslides and other mass movements. In: Proc. 4th Int. Symp. on Landslides, vol. 1. Toronto, Canada, pp 251–305Google Scholar
  13. Bhandari, RK, Senanayake, KS, Thayalan, N 1991Pitfalls in the prediction on landslide through rainfall dataBell, DH eds. Landslides2A.A. BalkemaRotterdam887890Google Scholar
  14. Biafiore M, Braca G, De Blasio A, Martone M, Onorati G, Tranfaglia G (2002) Il monitoraggio ambientale dei territori campani a rischio di frane e di alluvioni: lo sviluppo della rete idropluviometrica del Servizio Idrografico e Mareografico Nazionale. Unpublished reportGoogle Scholar
  15. Bolley S, Oliaro P (1999) Analisi dei debris flows in alcuni bacini campione dell’Alta Val Susa. Geoingegneria Ambientale e Mineraria, Marzo, pp 69–74Google Scholar
  16. Brand EW, Premchitt J, Phillipson HB (1984) Relationship between rainfall and landslides in Hong Kong. In: Proc. 4th Int. Symp. on Landslides, vol. 1. Toronto, pp 377–384Google Scholar
  17. Caine, N 1980The rainfall intensity-duration control of shallow landslides and debris flowsGeogr Ann A622327CrossRefGoogle Scholar
  18. Calcaterra D, Parise M, Palma B, Pelella L (2000) The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In: Proc. 8th Int. Symp. on Landslides (Bromhead E, Dixon N, Ibsen ML, eds), vol. 1. Cardiff: A.A. Balkema, pp 209–214Google Scholar
  19. Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. In: US Geological Survey Professional Paper 851. Washington DC: U.S. Government Printing Office, 51 ppGoogle Scholar
  20. Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorms in Valtellina (central Alps – Italy). In: Proc. 4th Int. Conf. and Field Workshop on Landslides. Tokyo: The Japan Geological Society, pp 267–272Google Scholar
  21. Cannon SH (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay Region, California (Ellen SD, Wieczorek GF, eds). US Geological Survey Professional Paper 1434, pp 35–42Google Scholar
  22. Cannon, SH, Ellen, SD 1985Rainfall conditions for abundant debris avalanches, San Francisco Bay region, CaliforniaCalif Geol38267272Google Scholar
  23. Cannon, SH, Gartner, JE 2005Wildfire-related debris flow from a hazards perspectiveJakob, MHungr, O eds. Debris flow hazards and related phenomenaSpringerBerlin Heidelberg363385Google Scholar
  24. Canuti, P, Focardi, P, Garzonio, CA 1985Correlation between rainfall and landslidesBull Int Assoc Eng Geol324954CrossRefGoogle Scholar
  25. Cardinali, M, Galli, M, Guzzetti, F, Ardizzone, F, Reichenbach, P, Bartoccini, P 2006Rainfall induced landslides in December 2004 in Southwestern Umbria, Central ItalyNat Hazard Earth Sys Sci6237260CrossRefGoogle Scholar
  26. Ceriani M, Lauzi S, Padovan N (1992) Rainfall and landslides in the Alpine area of Lombardia Region, central Alps, Italy. In: Interpraevent Int. Symp. vol. 2. Bern, pp 9–20Google Scholar
  27. Chien-Yuan, C, Tien-Chien, C, Fan-Chieh, Y, Wen-Hui, Y, Chun-Chieh, T 2005Rainfall duration and debris-flow initiated studies for real-time monitoringEnviron Geol47715724CrossRefGoogle Scholar
  28. Chleborad AF (2003) Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington, Area. US Geological Survey Open-File Report 03-463Google Scholar
  29. Clarizia M, Gullà G, Sorbino G (1996) Sui meccanismi di innesco dei soil slip. In: Int. Conf. Prevention of Hydrogeological Hazards: The Role of Scientific Research (Luino F, ed), vol. 1. Alba: L’Artistica Savigliano pub, pp 585–597Google Scholar
  30. Corominas J (2000) Landslides and climate. Keynote lecture. In: Proc. 8th Int. Symp. on Landslides (Bromhead E, Dixon N, Ibsen ML, eds), vol. 4. Cardiff: A.A. Balkema, pp 1–33Google Scholar
  31. Corominas, J, Moya, J 1996Historical landslides in the Eastern Pyrenees and their relation to rainy eventsChacon, JIrigaray, CFernandez, T eds. LandslidesA.A. BalkemaRotterdam125132Google Scholar
  32. Corominas, J, Moya, J 1999Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, SpainGeomorphology307993CrossRefGoogle Scholar
  33. Corominas J, Ayala FJ, Cendrero A, Chacón J, Díaz de Terán JR, Gonzáles A, Moja J, Vilaplana JM (2005) Impacts on natural hazard of climatic origin. In: ECCE Final Report: A Preliminary Assessment of the Impacts in Spain due to the Effects of Climate Change. Ministerio de Medio Ambiente.
  34. Crosta GB (1989) A study of slope movements caused by heavy rainfall in Valtellina (Italy – July 1987). In: Proc. 6th Int. Conf. and Field Workshop on Landslides ALPS 90 (Cancelli A, ed), vol. 79b. Milano: Ricerca Scientifica ed Educazione Permanente, pp 247–258Google Scholar
  35. Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Proc. 2nd EGS Plinius Conf. on Mediterranean Storms (Mugnai A, Guzzetti F, Roth G, eds). Siena, pp 463–487Google Scholar
  36. Crosta, GB, Frattini, P 2003Distributed modelling of shallow landslides triggered by intense rainfallNat Hazard Earth Sys Sci38193CrossRefGoogle Scholar
  37. Crozier, MJ 1986Landslides: causes, consequences and environmentCroom HelmLondon252Google Scholar
  38. Crozier, MJ 1999Prediction of rainfall-triggered landslides: a test of the antecedent water status modelEarth Surf Proc Land24825833CrossRefGoogle Scholar
  39. Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Proc. 3rd Australia-New Zealand Conf. on Geomechanics (Technical Groups, eds), vol. 6. Wellington: New Zealand Institution of Engineers, pp 247–251Google Scholar
  40. D’Orsi R, D’Avila C, Ortigao JAR, Dias A, Moraes L, Santos MD (1997) Rio-Watch: the Rio de Janeiro landslide watch system. In: Proc. 2nd PSL Pan-AM Symp. on Landslides, vol. 1. Rio de Janeiro, pp 21–30Google Scholar
  41. De Vita, P 2000Fenomeni di instabilità delle coperture piroclastiche dei monti Lattari, di Sarno e di Salerno (Campania) ed analisi degli eventi pluviometrici determinantiQuaderni di Geologia Applicata7213235Google Scholar
  42. Endo T (1970) Probable distribution of the amount of rainfall causing landslides. Annual report, Hokkaido Branch, Govern. Forest Experiment Station, Sapporo, pp 123–136Google Scholar
  43. Floris, M, Mari, M, Romeo, RW, Gori, U 2004Modelling of landslide-triggering factors – a case study in the Northern Apennines, ItalyHack, RAzzam, RCharlier, R eds. Lecture Notes in Earth Sciences 104: Engineering Geology for Infrastructure Planning in EuropeSpringerBerlin Heidelberg745753Google Scholar
  44. Gabet, EJ, Burbank, DW, Putkonen, JK, Pratt-Sitaula, BA, Oiha, T 2004Rainfall thresholds for landsliding in the Himalayas of NepalGeomorphology63131143CrossRefGoogle Scholar
  45. Giannecchini, R 2005Rainfall triggering soil slips in the southern Apuane Alps (Tuscany, Italy)Adv Geosci22124CrossRefGoogle Scholar
  46. Glade, T, Crozier, MJ, Smith, P 2000Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”Pure Appl Geophys15710591079CrossRefGoogle Scholar
  47. Govi, M, Sorzana, PF 1980Landslide susceptibility as function of critical rainfall amount in Piedmont basin (Northwestern Italy)Studia Geomorphologica Carpatho-Balcanica144360Google Scholar
  48. Govi, M, Mortara, G, Sorzana, P 1985Eventi idrologici e franeGeologia Applicata Ingegneria20359375Google Scholar
  49. Green, WH, Ampt, G 1911Studies of soil physics. Part I: The flow of air and water through soilsJ Agr Sci4124CrossRefGoogle Scholar
  50. Guadagno FM (1991) Debris flows in the Campanian volcaniclastic soil (Southern Italy). In: Proc. Int. Conf. on slope stability. Isle of Wight: Thomas Telford, pp 125–130Google Scholar
  51. Guidicini, G, Iwasa, OY 1977Tentative correlation between rainfall and landslides in a humid tropical environmentBull Int Ass Eng Geol161320CrossRefGoogle Scholar
  52. Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Dévoli G, Buezo SG, Diaz MR, Hernandez W (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: Practical mitigation. In: Proc. Int. Conf. on Fast Slope Movements – Prediction and Prevention for risk Mitigation, IC-FSM2003. Naples: Patron Pub, pp 275–282Google Scholar
  53. Hong, Y, Hiura, H, Shino, K, Sassa, K, Suemine, A, Fukuoka, H, Wang, G 2005The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, JapanLandslides297105CrossRefGoogle Scholar
  54. Innes, JL 1983Debris flowsProg Phys Geog7469501CrossRefGoogle Scholar
  55. Iverson, RM 2000Landslide triggering by rain infiltrationWater Resour Res3618971910CrossRefGoogle Scholar
  56. Iwamoto M (1990) Standard amount of rainfall for warning from debris disaster. In: Proc. 6th Int. Conf. and Field Workshop on Landslides ALPS 90 (Cancelli A, ed), vol. 79b. Milano: Ricerca Scientifica ed Educazione Permanente, pp 77–88Google Scholar
  57. Jakob, M, Weatherly, H 2003A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British ColumbiaGeomorphology54137156CrossRefGoogle Scholar
  58. Jan, CD, Chen, CL 2005Debris flows caused by typhoon Herb in TaiwanJakob, MHungr, O eds. Debris flow hazards and related phenomenaSpringerBerlin Heidelberg363385Google Scholar
  59. Jibson RW (1989) Debris flow in southern Porto Rico. Geological Society of America, special paper 236, pp 29–55Google Scholar
  60. Kanji MA, Massad F, Cruz PT (2003) Debris flows in areas of residual soils: occurrence and characteristics. Int. Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills. Iw-Flows2003, Sorrento: Associacione Geotecnica Italiana 2, pp 1–11Google Scholar
  61. Keefer, DK, Wilson, RC, Mark, RK, Brabb, EE, Brown, WM-III, Ellen, SD, Harp, EL, Wieczorek, GF, Alger, CS, Zatkin, RS 1987Real-time landslide warning during heavy rainfallScience238921925CrossRefGoogle Scholar
  62. Kim, SK, Hong, WP, Kim, YM 1991Prediction of rainfall-triggered landslides in KoreaBell, DH eds. LandslidesA.A. BalkemaRotterdam989994Google Scholar
  63. Larsen, MC, Simon, A 1993A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto RicoGeogr Ann A751323CrossRefGoogle Scholar
  64. Lumb, P 1975Slope failure in Hong KongQ J Eng Geol83165CrossRefGoogle Scholar
  65. Marchi, L, Arattano, M, Deganutti, AM 2002Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps)Geomorphology46117CrossRefGoogle Scholar
  66. Montgomery, DR, Dietrich, WE 1994A physically based model for the topographic control of shallow landslidingWater Resour Res3011531171CrossRefGoogle Scholar
  67. Montgomery, DR, Schmidt, KM, Greenberg, HM 2000Forest clearing and regional landslidingGeology28311314CrossRefGoogle Scholar
  68. Moser, M, Hohensinn, F 1983Geotechnical aspects of soil slips in Alpine regionsEng Geol19185211CrossRefGoogle Scholar
  69. New, M, Hulme, M, Jones, P 1999Representing twentieth-century space-time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatologyJ Climate12829856CrossRefGoogle Scholar
  70. Nilsen TH, Turner BL (1975) Influence of rainfall and ancient landslide deposits on recent landslides (1950–1971) in urban areas of Contra Costa County, California. US Geological Survey Bull 1388Google Scholar
  71. Nilsen TH, Taylor FA, Brabb EE (1976) Recent landslides in Alamanda County, California (1940–71). US Geological Survey Bull 1398Google Scholar
  72. Oberste-lehn D (1976) Slope stability of the Lomerias Muertas area, San Benito County, California. PhD, Stanford University, CaliforniaGoogle Scholar
  73. Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. In: Proc. 2nd Int. Congress of the Int Ass Eng Geol, vol. 11. San Paulo 11, pp 1–10Google Scholar
  74. Paronuzzi P, Coccolo A, Garlatti G (1998) Eventi meteorici critici e debris flows nei bacini montani del Friuli. L’Acqua, Sezione I/Memorie, pp 39–50Google Scholar
  75. Pasuto, A, Silvano, S 1998Rainfall as a triggering factor of shallow mass movements. A case study in the Dolomites, ItalyEnviron Geol35184189CrossRefGoogle Scholar
  76. Pedrozzi, G 2004Triggering of landslides in Canton Ticino (Switzerland) and prediction by the rainfall intensity and duration methodBull Eng Geol Environ63281291CrossRefGoogle Scholar
  77. Philip, JR 1954An infiltration equation with physical significanceSoil Sci77153157CrossRefGoogle Scholar
  78. Premchitt J, Brand EW, Chen PYM (1994) Rain-induced landslides in Hong Kong, 1972–1992. Asia Engineer, June, pp 43–51Google Scholar
  79. Reichenbach, P, Cardinali, M, De Vita, P, Guzzetti, F 1998Regional hydrological thresholds for landslides and floods in the Tiber River Basin (Central Italy)Environ Geol35146159CrossRefGoogle Scholar
  80. Rodolfo KS, Arguden AT (1991) Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. In: Sedimentation in volcanic settings (Fisher RV, Smith GA, eds), vol. 45. Society of Economic Paleontologists and Mineralogists, special publication, pp 71–88Google Scholar
  81. Salvucci, GD, Entekabi, D 1994Explicit expressions for Green-Ampt (Delta function diffusivity) infiltration rate and cumulative storageWater Resour Res3026612663CrossRefGoogle Scholar
  82. Sandersen, F, Bakkehøi, S, Hestnes, E, Lied, K 1996The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stabilitySenneset,  eds. LandslidesA.A. BalkemaRotterdam97114Google Scholar
  83. Sorriso-Valvo M, Agnesi V, Gullà G, Merende L, Antronico L, Di Maggio C, Filice E, Petrucci O, Tansi C (1994) Temporal and spatial occurrence of landsliding and correlation with precipitation time series in Montaldo Uffugo (Calabria) and Imera (Sicilia) areas. In: Temporal occurrence and forecasting of landslides in the European Community (Casale R, Fantechi R, Flageollet JC, eds). Final Report 2, pp 825–869Google Scholar
  84. Tatizana C, Ogura M, Rocha M, Cerri LES (1987) Analise de correlacao entre chuvas e escorregamentos, Serra do Mar, Municipio de Cubatao. Proc. 5th Congress Brasiler, Geol Eng San Paolo, pp 225–236Google Scholar
  85. Terlien, MTJ 1998The determination of statistical and deterministic hydrological landslide-triggering thresholdsEnviron Geol35124130CrossRefGoogle Scholar
  86. Tuñgol, NM, Regalado, MTM 1996Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992Newhall, CGPunongbayan, RS eds. Fire and mud: eruptions and lahars of Mount PinatuboPhilippine Institute of Volcanology and Seismology, Quezon City and University of Washington PressSeattle1126Google Scholar
  87. White, ID, Mottershead, DN, Harrison, JJ 1996Environmental systems2Chapman & HallLondon616Google Scholar
  88. Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains. In: Debris flow/avalanches: process, recognition, and mitigation (Costa JE, Wieczorek GF, eds). Geological Society of America, Reviews in Engineering Geology 7: 93–104Google Scholar
  89. Wieczorek GF (1996) Landslide triggering mechanisms. In: Landslides: investigation and mitigation (Turner AK, Schuster RL, eds). Washington DC: Transportation Research Board, National Research Council, special report, pp 76–90Google Scholar
  90. Wieczorek, GF, Glade, T 2005Climatic factors influencing occurrence of debris flowsJakob, MHungr, O eds. Debris flow hazards and related phenomenaBerlin HeidelbergSpringer325362Google Scholar
  91. Wieczorek, GF, Morgan, BA, Campbell, RH 2000Debris flow hazards in the Blue Ridge of Central VirginiaEnviron Eng Geosci6323Google Scholar
  92. Wilson, RC 1989Rainstorms, pore pressures, and debris flows: a theoretical frameworkMorton, DMSadler, PM eds. Landslides in a semi-arid environmentPublications of the Inland Geological SocietyCalifornia101117Google Scholar
  93. Wilson RC (1997) Normalizing rainfall/debris-flow thresholds along the U.S. Pacific coast for long-term variations in precipitation climate. In: Proc. 1st Int. Conf. on Debris-Flow Hazard Mitigation (Chen CL, ed). San Francisco: American Society of Civil Engineers, pp 32–43Google Scholar
  94. Wilson RC (2000) Climatic variations in rainfall thresholds for debris-flows activity. In: Proc. 1st Plinius Conf. on Mediterranean Storms (Claps P, Siccardi F, eds). Maratea, pp 415–424Google Scholar
  95. Wilson RC, Torikai JD, Ellen SD (1992) Development of rainfall thresholds for debris flows in the Honolulu District, Oahu. US Geological Survey Open-File Report 92–521, 45 ppGoogle Scholar
  96. Wilson, RC, Wieczorek, GF 1995Rainfall thresholds for the initiation of debris flow at La Honda, CaliforniaEnviron Eng Geosci11127Google Scholar
  97. Wilson RC, Jayko AS (1997) Preliminary maps showing rainfall thresholds for debris-flow activity, San Francisco Bay Region, California. US Geological Survey Open- File Report 97-745 FGoogle Scholar
  98. Wu, W, Sidle, RC 1995A distributed slope stability model for steep forested basinsWater Resour Res3120972110CrossRefGoogle Scholar
  99. Zezere, JL, Rodrigues, ML 2002Rainfall thresholds for landsliding in Lisbon Area (Portugal)Rybar, JStemberk, JWagner, P eds. LandslidesA.A. BalkemaLisse333338Google Scholar
  100. Zezere, JL, Trigo, RM, Trigo, IF 2005Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic OscillationNat Hazard Earth Sys Sci5331344CrossRefGoogle Scholar
  101. Zimmermann M, Mani P, Gamma P, Gsteiger P, Heiniger O, Hunziker G (1997) Murganggefahr und Klimaänderung–ein GIS-basierter Ansatz. In: Schlussbericht des Nationalen Forschungsprogrammes, NFP 31. Zürich: vdf Hochschulverlag AG, 161 ppGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • F. Guzzetti
    • 1
  • S. Peruccacci
    • 1
  • M. Rossi
    • 1
  • C. P. Stark
    • 2
  1. 1.Istituto di Ricerca per la Protezione IdrogeologicaConsiglio Nazionale delle RicerchePerugiaItaly
  2. 2.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations