Meteorology and Atmospheric Physics

, Volume 97, Issue 1–4, pp 221–237 | Cite as

Hurricanes Ivan, Jeanne, Karl (2004) and mid-latitude trough interactions

  • M. S. Peng
  • R. N. Maue
  • C. A. Reynolds
  • R. H. Langland
Article

Summary

Singular vectors (SVs) constructed from the adjoint model of the U.S. Naval Operational Global Atmosphere Prediction System (NOGAPS) for three Atlantic hurricanes in 2004, Ivan, Jeanne and Karl, are examined to understand interactions between them and a mid-latitude trough system. By optimizing the perturbation energy localized in a small region centered at the 48-hour projected position of a tropical cyclone, the initial time singular vector represents the sensitive region to the final state within the specified region for a specified optimization period. For hurricane Ivan, the SV analysis reveals the merging of a shortwave mid-latitude trough and Ivan to form a new trough system. This new trough system impacted the evolution of hurricane Jeanne in subsequent time through the upstream flow of the trough that moved toward Jeanne. This is consistent with previous studies on the sensitivity of tropical cyclone prediction using SV diagnostics. The SV associated with Jeanne at later stage shows that Jeanne influenced the third hurricane Karl through the trough system as Karl went through extratropical transition and became part of the trough. This effect is magnified when the SV is computed using the moist adjoint system containing large scale precipitation. Detailed diagnostics of the SVs for individual components at different levels show that the sensitivity associated with the trough is very similar for those optimized for Jeanne and Karl, respectively, thus providing evidence that the mid-latitude trough impacted Jeanne and Karl at the same time. This study demonstrates the capability of singular vector in diagnosing complicated interactions among a mid-latitude trough and three co-existing tropical cyclones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atallah, EH, Bosart, LF 2003The extratropical transition and precipitation distribution of hurricane Floyd (1999)Mon Wea Rev13110631081CrossRefGoogle Scholar
  2. Barkmeijer, JR, Buizza, R, Palmer, TN, Puri, K, Mahfouf, J-F 2001Tropical singular vectors computed with linearized diabatic physicsQuart J Roy Meteor Soc127685708CrossRefGoogle Scholar
  3. Carrera, ML, Gyakum, JR, Zhang, D-L 1999A numerical case study of secondary marine cyclogenesis sensitivity to initial error and varying physical processesMon Wea Rev127641660CrossRefGoogle Scholar
  4. Chan, JCL, Ko, FMF, Lei, YM 2002Relationship between potential vorticity tendency and tropical cyclone motionJ Atmos Sci5913171336CrossRefGoogle Scholar
  5. Chan, JCL, Ko, FMF, Lei, YM 2005The physics of tropical cyclone motionAnn Rev Fluid Mech3799128CrossRefGoogle Scholar
  6. Coutinho, MM, Hoskins, BJ, Buizza, R 2004The influence of physical processes on extratropical singular vectorsJ Atmos Sci61195209CrossRefGoogle Scholar
  7. DiMego, GJ, Bosart, LF 1982aThe transformation of Tropical Storm Agnes into an extratropical cyclone. Part 1: The observed fields and vertical motion computationsMon Wea Rev110385411CrossRefGoogle Scholar
  8. DiMego, GJ, Bosart, LF 1982bThe transformation of tropical storm Agnes into an extratropical cyclone. Part 2: Moisture, vorticity and kinetic energy budgetsMon Wea Rev110412433CrossRefGoogle Scholar
  9. Farrell, BF 1990Small error dynamics and the predictability of atmospheric flowsJ Atmos Sci4711931206Google Scholar
  10. Ferreira, RN, Schubert, WH 1999The role of tropical cyclones in the formation of tropical upper-tropospheric troughsJ Atmos Sci5628912907CrossRefGoogle Scholar
  11. Fiorino, M, Elsberry, RL 1989Some aspects of vortex structure related to tropical cyclone motionJ Atmos Sci46975990CrossRefGoogle Scholar
  12. Hakim, GJ, Bosart, LF, Keyser, D 1995The Ohio valley wave-merger cyclogenesis event of 25–26 January 1978. Part 1: Multiscale case studyMon Wea Rev12326632692CrossRefGoogle Scholar
  13. Hakim, GJ, Bosart, LF, Keyser, D 2000Climatology of coherent structures on the extratropical tropopauseMon Wea Rev128385406CrossRefGoogle Scholar
  14. Hanley, D, Molinari, J, Keyser, D 2001A composite study of the interactions between tropical cyclones and upper-tropospheric troughsMon Wea Rev12925702584CrossRefGoogle Scholar
  15. Hoskins, BJ, McIntyre, ME, Robertson, AW 1985On the use and significance of isentropic potential vorticity mapsQuart J Roy Meteor Soc111877946CrossRefGoogle Scholar
  16. Jones, SC, Harr, PA, Abraham, J, Bosart, LF, Bowyer, PJ, Evans, JL, Hanley, DE, Hanstrum, BN, Hart, RE, Lalaurette, F, Sinclair, MR, Smith, RK, Thorncroft, C 2003The extratropical transition of tropical cyclones: forecast challenges, current understanding, and future directionsWea Forecast1810521092CrossRefGoogle Scholar
  17. Knaff, JA 1997Implications of summertime sea level pressure anomalies in the tropical Atlantic regionJ Climate10789804CrossRefGoogle Scholar
  18. Lorenz, EN 1965A study of the predictability of a 28-variable atmospheric modelTellus17321333CrossRefGoogle Scholar
  19. Majumdar SJ, Aberson SD, Bishop CH, Buizza R, Peng MS, Reynolds CA (2005) A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon Wea Rev (in press)Google Scholar
  20. Molinari, J, Vollaro, D 1989External influences on hurricane intensity. Part 1: Outflow-layer eddy angular momentum fluxesJ Atmos Sci4610931105CrossRefGoogle Scholar
  21. Molinari, J, Skubis, S, Vollaro, D, Alsheimer, F, Willoughby, HE 1990External influences on hurricane intensity. Part 2: Vertical structure and response of a hurricane vortexJ Atmos Sci4719021918CrossRefGoogle Scholar
  22. Molinari, J, Skubis, S, Vollaro, D, Alsheimer, F, Willoughby, HE 1998Potential vorticity analysis of tropical cyclone intensificationJ Atmos Sci5526322644CrossRefGoogle Scholar
  23. Molinari, J, Dodge, P, Vallaro, D, Corbosiero, KL, Marks, F 2006Mesoscale aspects of the downshear reformation of a tropical cycloneJ Atmos Sci63341354CrossRefGoogle Scholar
  24. Palmer, TN, Gelaro, R, Barkmeijer, J, Buizza, R 1998Singular vectors, metrics, and adaptive observationsJ Atmos Sci55633653CrossRefGoogle Scholar
  25. Peng, MS, Reynolds, CA 2005Double trouble for typhoon forecastersGeophys Res Lett32L02810DOI: 10.1029/2004GL021680CrossRefGoogle Scholar
  26. Peng, MS, Reynolds, CA 2006Sensitivity of tropical cyclone forecastJ Atmos Sci6325082528CrossRefGoogle Scholar
  27. Puri, K, Barkmeijer, J, Palmer, TN 2001Ensemble prediction of tropical cyclones using targeted diabatic singular vectorsQuart J Roy Meteor Soc127685708CrossRefGoogle Scholar
  28. Shapiro, LJ 1992Hurricane vortex motion and evolution in a three-layer modelJ Atmos Sci49140154CrossRefGoogle Scholar
  29. Thorncroft, CD, Hoskins, BJ, McIntyre, ME 1993Two paradigms of baroclinic wave life-cycle behaviourQuart J Roy Meteor Soc1191755CrossRefGoogle Scholar
  30. Wang, B, Li, XF 1997Direction of beta drift in horizontally sheared flowJ Atmos Sci5414621471CrossRefGoogle Scholar
  31. Wang, Y, Wu, CC 2004Current understanding of tropical cyclone structure and intensity changes – a reviewMeteorol Atmos Phy87257278CrossRefGoogle Scholar
  32. Wu, CC, Emanuel, KA 1993Interaction of a baroclinic vortex with background shear-Application to hurricane movementJ Atmos Sci506276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. S. Peng
    • 1
  • R. N. Maue
    • 1
  • C. A. Reynolds
    • 1
  • R. H. Langland
    • 1
  1. 1.Naval Research LaboratoryMontereyUSA

Personalised recommendations