Meteorology and Atmospheric Physics

, Volume 96, Issue 3–4, pp 293–304

Modeling microphysical influences on optical turbulence in complex areas

  • A. Tunick


An earlier paper showed that there is a growing need for increasingly accurate and reliable numerical models to predict optical turbulence conditions, especially in complex (nonuniform) signal propagation environments. Thus, we present a finite-difference computer model to demonstrate a viable approach for predicting the microphysical (microclimate) influences on optical turbulence intensity (Cn2) around the ARL A_LOT Facility and its surroundings (which consist of multiple building arrays and forests). Our multi-dimensional prototype model begins to address optical turbulence conditions along more complex lines-of-sight and begins to account for inhomogeneities in Cn2 brought about by horizontal changes in landscape, wind flow, temperature, and humidity. For now, the model physics represent advection, pressure gradient, eddy diffusion, and vegetation drag force processes. Simple mechanisms to predict the heat and moisture source terms have also been incorporated. Initial model results have been quite encouraging. The model code is computationally efficient and extremely flexible with regard to modifications and debugging. We anticipate that this kind of computational research will be an important vehicle for investigating Cn2 and related laser-optic propagation effects in complex areas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, EL 1988Estimating Cn2 over snow and sea ice from meteorological dataJ Opt Soc Am5481495Google Scholar
  2. Beland RR (1993) Propagation through atmospheric turbulence. In: The Infrared Electro-optical Systems Handbook (Accetta JS, Shumaker DL, eds). SPIE Press Monograph, PM10, Bellingham, WAGoogle Scholar
  3. Blocken, B, Carmeliet, J 2004Pedestrian wind environment around buildings: literature review and practical examplesJ Thermal Environ Building Sci28107159CrossRefGoogle Scholar
  4. Businger, JA, Wyngaard, JC, Izumi, Y, Bradley, EF 1971Flux-profile relationships in the atmospheric surface layerJ Atmos Sci28181189CrossRefGoogle Scholar
  5. Chiba, T 1971Spot dancing of the laser beam propagated through the turbulent atmosphereAppl Optics1024562461CrossRefGoogle Scholar
  6. Dyer, AJ 1974A review of flux-profile relationshipsBound Layer Meteorol7363372CrossRefGoogle Scholar
  7. Ferziger, JH, Perić, M 2002Computational methods for fluid dynamics3SpringerBerlin423Google Scholar
  8. Fried, DL, Mevers, GE, Keister, MP 1967Measurements of laser beam scintillation in the atmosphereJ Opt Soc Am57787797Google Scholar
  9. Hinze, JO 1975TurbulenceMcGraw-HillNew York800Google Scholar
  10. Holland, JZ 1989On pressure-driven wind in deep forestsJ Appl Meteorol2813491355CrossRefGoogle Scholar
  11. Hughes, RJ, Buttler, WT, Kwiat, PG, Lamoreaux, SK, Morgan, GL, Nordholt, JE, Peterson, CG 2000Free-space quantum key distributionJ Mod Optic47549562CrossRefGoogle Scholar
  12. Ishimaru, A 1978

    The beam wave case and remote sensing

    Laser Beam Propagation in the AtmosphereSpringerNew York129170
    Google Scholar
  13. Kopeika, NS 1998A system engineering approach to imagingSPIE Optical Engineering PressBellingham, WA679Google Scholar
  14. Li, Z, Lin, JD, Miller, DR 1990Air flow over and through a forest edge: a steady-state numerical simulationBound Layer Meteorol51179197CrossRefGoogle Scholar
  15. Meyers RE (2005) Personal communicationGoogle Scholar
  16. Monin, AS, Obukhov, AM 1954Basic regularity in turbulent mixing in the surface layer of the atmosphereTr Akad Nauk SSSR Geofiz Inst24163187Google Scholar
  17. Monin, AS, Yaglom, AM 1971Statistical fluid mechanicsMIT PressCambridge, MA769Google Scholar
  18. Panofsky, HA 1968The structure constant for the index of refraction in relation to the gradient of the index of refraction in the surface layerJ Geophys Res7360476049CrossRefGoogle Scholar
  19. Parry, G 1981Measurement of atmospheric turbulence induced intensity fluctuation in a laser beamOpt Acta28715728Google Scholar
  20. Rachele, H, Tunick, A 1994Energy balance model for imagery and electromagnetic propagationJ Appl Meteor33964976CrossRefGoogle Scholar
  21. Schlichting, H 1979Boundary layer theoryMcGraw-HillNew York817Google Scholar
  22. Shaw, RH, Schumann, U 1992Large-eddy simulation of turbulent flow above and within a forestBound Layer Meteorol614764CrossRefGoogle Scholar
  23. Shinn JH (1971) Steady-state two-dimensional air flow in forests and the disturbance of surface layer flow by a forest wall. ECOM-5383, U.S. Army Electronics Command, Fort Monmouth, NJGoogle Scholar
  24. Tatarski, VI 1971The effects of the turbulent atmosphere on wave propagationIsrael Program for Scientific TranslationsJerusalem472Google Scholar
  25. Tunick A (2002) Coupling meteorology to acoustics in forests. ARL-MR-538, U.S. Army Research Laboratory, Adelphi, MD, 20783-1197 [Available from DTIC at]
  26. Tunick, A 2003aCalculating the micrometeorological influences on the speed of sound through the atmosphere in forestsJ Acoust Soc Am11417961806CrossRefGoogle Scholar
  27. Tunick A (2003b) A two-dimensional meteorological computer model for the forest canopy. ARL-MR-569, U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197 [Available from DTIC at]
  28. Tunick A (2005a) Critical assessment of selected urban microclimate model frameworks. ARL-MR-619, U.S. Army Research Laboratory, Adelphi, MD, 20783-1197 [Available from DTIC at]
  29. Tunick, A 2005bToward increasing the accuracy and realism of future optical turbulence (Cn2) calculationsMeteorol Atmos Phys90159164CrossRefGoogle Scholar
  30. Tunick, A 2006A radiation and energy budget algorithm for forest canopiesMeteorol Atmos Phys91237246CrossRefGoogle Scholar
  31. Vardoulakis, S, Fisher, BEA, Pericleous, K, Gonzolez-Flesca, N 2003Modelling air quality in street canyons: a reviewAtmos Environ37155182CrossRefGoogle Scholar
  32. Vorontsov M, Carhart G, Banta M, Weyrauch T, Gowens J, Carrano J (2003) Atmospheric Laser Optics Testbed (A_LOT): Atmospheric propagation characterization, beam control, and imaging results. In: Proc. SPIE Vol. 5162, Advanced Wavefront Control: Methods, Devices, and Applications (Gonglewski JD, Vorontsov MA, Gruneisen MT, eds). SPIE, Bellingham, WAGoogle Scholar
  33. Wesely, ML 1976The combined effect of temperature and humidity fluctuations on refractive indexJ Appl Meteorol154349CrossRefGoogle Scholar
  34. Wilson KE, Lesh JR, Araki K, Arimoto Y (1997) Overview of the ground-to-orbit lasercom demonstration (GOLD). In: Proc. Free-space Laser Communication Technologies IX, SPIE 2990 (Stephen Mecherle G, ed), pp 23–30Google Scholar
  35. Wilson, JD, Flesch, TK 1999Wind and remnant tree sway in forest cutblocks III. A wind flow model to diagnose spatial variationAgric For Meteorol93259282CrossRefGoogle Scholar
  36. Zak M, Zbilut JP, Meyers RE (1997) From instability to intelligence: complexity and predictability in nonlinear dynamics. Lecture Notes in Physics, Springer, 552 ppGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Tunick
    • 1
  1. 1.U.S. Army Research Laboratory, Computational and Information Sciences DirectorateAdelphiUSA

Personalised recommendations