Meteorology and Atmospheric Physics

, Volume 96, Issue 3–4, pp 277–291 | Cite as

Clear-sky aerosol radiative forcing effects based on multi-site AERONET observations over Europe

  • S. Gonzi
  • O. Dubovik
  • D. Baumgartner
  • E. Putz


One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.


Aerosol Optical Depth Surface Albedo Solar Zenith Angle Anthropogenic Aerosol International Satellite Cloud Climatology Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boucher, O, Schwartz, SE, Ackerman, TP, Anderson, TL, Bergstrom, B, Bonnel, B, Chóylek, P, Dahlback, A, Fouquart, Y, Fu, Q, Halthore, RN, Haywood, JM, Iversen, T, Kato, S, Kinne, S, Kirkevåg, A, Knapp, KR, Lacis, A, Laszlo, I, Mischenko, MI, Nemesure, S, Ramaswamy, V, Roberts, DL, Russeli, P, Schlesinger, ME, Stephens, GL, Wagener, R, Wang, M, Wong, J, Yang, F 1998Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosolsJ Geophys Res10316,97916,998CrossRefGoogle Scholar
  2. Charlson, RJ, Schwartz, SE, Hales, JM, Cess, RD, Coakley, JA, Hansen, JE, Hofmann, DJ 1992Climate forcing by anthropogenic aerosolsScience255423430CrossRefGoogle Scholar
  3. Chung, CE, Ramanathan, V, Kim, D, Podgorny, IA 2005Global anthropogenic aerosol direct forcing derived from satellite and ground-based observationsJ Geophys Res110D24207DOI: 10.1029/2005JD00006356CrossRefGoogle Scholar
  4. Chylek, P, Coakley, JA 1974Aerosols and climateScience1837577CrossRefGoogle Scholar
  5. Coakley, JA, Cess, RD, Yurevich, FB 1983The effect of tropospheric aerosols on the Earth’s radiation budget: a parameterization for climate modelsJ Atmos Sci40116138CrossRefGoogle Scholar
  6. Delene, DJ, Ogren, JA 2002Variability of aerosol optical properties at four North American surface monitoring sitesJ Atmos Sci5911351150CrossRefGoogle Scholar
  7. Dubovik, O, King, MD 2000A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurementsJ Geophys Res1020,67320,696Google Scholar
  8. Dubovik, O, Smirnov, A, Holben, BN, King, MD, Kaufman, YJ, Eck, TF, Slutsker, I 2000Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurementsJ Geophys Res10597919806CrossRefGoogle Scholar
  9. Dubovik, O, Holben, BN, Eck, TF, Smirnov, A, Kaufman, YJ, King, MD, Tanré, D, Slutsker, I 2002aVariability of absorption and optical properties of key aerosol types observed in worldwide locationsJ Atmos Sci59590608CrossRefGoogle Scholar
  10. Dubovik, O, Holben, BN, Lapyonok, T, Sinyuk, A, Mishchenko, MI, Yang, P, Slutsker, I 2002bNon-spherical aerosol retrieval method employing light scattering by spheriodsGeophys Res Lett2954-154-4CrossRefGoogle Scholar
  11. Ganguly, D, Gadhavi, H, Jayaraman, A, Rajesh, TA, Misra, A 2005Single scattering albedo of aerosols over the central India: implications for the regional aerosol radiative forcingGeophys Res Lett32L13821DOI: 10.1029/2005GL023023CrossRefGoogle Scholar
  12. Gonzi S, Baumgartner D, Putz E (2002) Aerosol Climatology and optical properties of key aerosol types observed in Europe. IGAM/UG Technical Report for EU Np. 1/2002Google Scholar
  13. Hansen, JE, Sato, M, Ruedy, R 1997Radiative forcing and climate responseJ Geophys Res10268316864CrossRefGoogle Scholar
  14. Haywood, JM, Boucher, O 2000Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a reviewRev Geophys38513543CrossRefGoogle Scholar
  15. Haywood, JM, Ramaswamy, V 1998Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosolsJ Geophys Res10360436058CrossRefGoogle Scholar
  16. Haywood, JM, Shine, KP 1995The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budgetGeophys Res Lett2603606CrossRefGoogle Scholar
  17. Haywood, JM, Francis, PN, Glew, MD, Dubovik, O, Holben, BN 2003aComparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI-2000J Geophys Res1088471DOI: 10.1029/2002JD002250CrossRefGoogle Scholar
  18. Haywood JM, Osborne SR, Francisx PN, Keil A, Formenti P, Andrea MO, Kaye PH (2003b) The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J Geophys Res 108 (DOI: 10.1029/2002JD002226)Google Scholar
  19. Hess, M, Koepke, P, Schult, I 1998Optical properties of aerosols and clouds: the software package OPACB Am Met Soc79831844CrossRefGoogle Scholar
  20. Holben, BN,  et al. 1998AERONET – A federated instrument network and data archive for aerosol characterizationRemote Sens Environ66116CrossRefGoogle Scholar
  21. IPCC International Panel on Climate Change (2001)Google Scholar
  22. International Satellite Cloud Climatology Project (ISCCP) 2002:
  23. Jacobson, MZ 2001Strong radiative heating due to the mixing state of black carbon in atmospheric aerosolsNature409695697CrossRefGoogle Scholar
  24. Kaufman, YJ, Tanre, D, Boucher, O 2002A satellite view of aerosols in the climate systemNature419215223CrossRefGoogle Scholar
  25. Lohman, U, Feichter, J 2001Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale?Geophys Res Lett28159161CrossRefGoogle Scholar
  26. Lohman, U, Lesins, G 2002Stronger constraints on the anthropogenic indirect aerosol effectScience29810121015CrossRefGoogle Scholar
  27. Markowicz KM, Flatau PJ, Ramana MV, Crutzen PJ, Ramanathan V (2002) Absorbing mediterranean aerosols lead to large reduction in the solar radiation at the surface. Geophys Res Lett 29(20) (DOI: 10.1029/2002GL015767)Google Scholar
  28. Mayer, B, Kylling, A 2005Technical note: The libRadtran software package for radiative transfer calculations – description and examples of useAtmos Chem Phys Discuss513191381Google Scholar
  29. Moderate Resolution Imaging Spectrometer (MODIS) Product:
  30. Nakajima T et al (2003) Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J Geophys Res 108 (DOI: 10.2029/2002JD003261)Google Scholar
  31. Nemesure, S, Wagener, R, Schwartz, SE 1995Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: sensitivity to particle size, composition, and relative humidityJ Geophys Res1026,10526,116Google Scholar
  32. Pandithurai G, Pinker RT, Takamura T, Devara PCS (2004) Aerosols radiative forcing over a tropical urban site in India. Geophys Res J 31 (DOI: 10.1029/2004GL019702)Google Scholar
  33. Penner JE (ed) et al (2001) Aerosols, their direct and indirect effects. IPCC, climate change 2001: The scientific basis, chap. 5, pp 289–348Google Scholar
  34. Ramanathan, V,  et al. 2001aIndian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian hazeJ Geophys Res10628,37128,398CrossRefGoogle Scholar
  35. Ramanathan, V, Crutzen, PJ, Kiehl, JT, Rosenfeld, D 2001bAerosols, climate, and the hydrological cycleScience29421192124CrossRefGoogle Scholar
  36. Reid, JS,  et al. 2003Comparison of size and morphological measurements of coarse mode dust particles from AfricaJ Geophys Res1088593DOI: 10.1029/2002JD002485CrossRefGoogle Scholar
  37. Satheesh, SK 2002Aerosol radiative forcing over land: effect of surface and cloud reflectionAnn Geophys2021052109CrossRefGoogle Scholar
  38. Satheesh, SK, Ramanathan, V 2000Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surfaceNature4056063CrossRefGoogle Scholar
  39. Seinfeld, JH, Pandis, SN 1998Atmospheric chemistry and physicsWileyNew YorkGoogle Scholar
  40. Smirnov, A, Holben, BN, Eck, TF, Dubovik, O, Slutsker, I 2000Cloud screening and quality control algorithms for the AERONET databaseRem Sens Environ73337349CrossRefGoogle Scholar
  41. Takemura, T, Nakajima, T, Dubovik, O, Holben, BN, Kinne, S 2002Single-scattering albedo and radiative forcing of various species with a global three-dimension modelJ Climate15333352CrossRefGoogle Scholar
  42. Toon, OB, Mckay, CP, Ackerman, TP, Santhanam, K 1989Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheresJ Geophys Res9416,28716,301Google Scholar
  43. Wilks, DS 1995Statistical methods in the atmospheric sciencesAcademic PressNew YorkGoogle Scholar
  44. Won, JG, Yoon, SC, Kim, SW 2004Estimation of direct radiative forcing of Asian dust aerosols with sun/sky radiometer and lidar measurements at Gosan, KoreaJ Met Soc Japan82115130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Gonzi
    • 1
  • O. Dubovik
    • 2
  • D. Baumgartner
    • 3
  • E. Putz
    • 1
  1. 1.Department of Geophysics, Astrophysics and Meteorology, Institute for PhysicsUniversity of GrazGrazAustria
  2. 2.Laboratoire d’Optique AtmosphériqueUniversité des Sciences et Technologies de LilleFrance
  3. 3.Kanzelhöhe Solar Observatory, University of GrazGrazAustria

Personalised recommendations