Meteorology and Atmospheric Physics

, Volume 93, Issue 1–2, pp 79–95

Small-scale dynamics of the south foehn in the lower Wipp Valley

  • G. Zängl
  • A. Gohm
Article

Summary

In this paper, very-high-resolution numerical simulations are presented to analyze the small-scale dynamics of the foehn in the lower Wipp Valley and the adjacent parts of the Inn Valley. This region was one of the target areas for foehn observations during the Mesoscale Alpine Programme (MAP). Our simulations consider two MAP cases that markedly differed in the depth of the foehn flow. To isolate the dynamical effect of the key orographic features in the Wipp Valley region, we performed sensitivity experiments with different topography modifications. These involve lowering or even removing the Nordkette range, which constitutes the northern side wall of the east–west-oriented Inn Valley, and closing the Stubai Valley, which is the northernmost and largest tributary of the Wipp Valley. A comparison with surface and lidar observations indicates that our present model resolution of 467 m significantly improves the realism of the simulations compared to a resolution of 800 m, as used in a previous study.

The Nordkette is found to have a twofold impact on the dynamics of foehn breakthrough into the Inn Valley. In reality, this mountain chain deflects part of the southerly foehn current coming from the Wipp Valley into the perpendicularly oriented Inn Valley. Our sensitivity tests indicate that this flow deflection tends to accelerate the foehn breakthrough into the Inn Valley, while upstream blocking effects induced by the Nordkette act to slow down the process of foehn breakthrough. The flow pattern in the Wipp Valley reveals that the upstream effects of the Nordkette are not quite far-reaching. The amplitude of the gravity waves over the lower Wipp Valley gets somewhat reduced by these upstream effects, but the overall flow pattern remains largely unaffected. Closing the Stubai Valley also has a minor effect of the wave structure and tends to reduce the cross-valley variability of the foehn flow in the lower Wipp Valley.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beffrey, G, Jaubert, G, Dabas, A 2004Foehn flow and stable air mass in the Rhine Valley: the beginning of a MAP eventQuart J Roy Met Soc130541560CrossRefGoogle Scholar
  2. Clark, TL, Hall, WD, Banta, RM 1994Two- and three-dimensional simulations of the 9 January 1989 severe Boulder windstorm: comparison with observationsJ Atmos Sci5123172343CrossRefGoogle Scholar
  3. Colle, BA, Mass, CF 1998Windstorms along the western side of the Washington Cascade Mountains. Part I: a high-resolution observational and modeling study of the 12 February 1995 eventMon Wea Rev1262552Google Scholar
  4. Drobinski, P, Häberli, C, Richard, E, Lothon, M, Dabas, AM, Flamant, PM, Furger, M, Steinacker, R 2003Scale interaction processes during the MAP-IOP 12 south foehn event in the Rhine ValleyQuart J Roy Met Soc129729753CrossRefGoogle Scholar
  5. Flamant, C, Drobinski, P, Nance, L, Banta, RM, Darby, L, Dusek, J, Hardesty, M, Pelon, J, Richard, E 2002Gap flow in an Alpine valley during a shallow south foehn event: observations, numerical simulations and hydraulic analogueQuart J Roy Met Soc12811731210CrossRefGoogle Scholar
  6. Garnier, BJ, Ohmura, A 1968A method of calculating the direct shortwave radiation income of slopesJ Appl Meteor7796800CrossRefGoogle Scholar
  7. Gohm, A, Mayr, GJ 2004Hydraulic aspects of foehn winds in an Alpine valleyQuart J Roy Met Soc131449480CrossRefGoogle Scholar
  8. Gohm, A, Zängl, G, Mayr, GJ 2004South Foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): verification of high-resolution numerical simulations with observationsMon Wea Rev13278102CrossRefGoogle Scholar
  9. Grell, GA 1993Prognostic evaluation of assumptions used by cumulus parameterizationsMon Wea Rev121764787CrossRefGoogle Scholar
  10. Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 122 ppGoogle Scholar
  11. Guo Y-R, Chen S (1994) Terrain and land use for the fifth-generation Penn State/NCAR mesoscale modeling system (MM5): program TERRAIN. NCAR Tech. Note NCAR/TN-397 + IA, 114 ppGoogle Scholar
  12. Ivančan-Picek, B, Tutiš, V 1996A case study of a severe Adriatic bora on 28 December 1992Tellus48A357367Google Scholar
  13. Jaubert, G, Stein, J 2003Multiscale and unsteady aspects of a deep foehn event during MAPQuart J Roy Met Soc129755776CrossRefGoogle Scholar
  14. Keil, C, Cardinali, C 2004The ECMWF re-analysis of the MAP Special Observing PeriodQuart J Roy Met Soc13028272849CrossRefGoogle Scholar
  15. Klemp, JB, Durran, DR 1983An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale modelsMon Wea Rev111430444CrossRefGoogle Scholar
  16. Klemp, JB, Lilly, DR 1975The dynamics of wave-induced downslope windsJ Atmos Sci32320339CrossRefGoogle Scholar
  17. Lothon, M, Druilhet, A, Bénech, B, Campistron, B, Bernard, S, Saïd, F 2003Experimental study of five foehn events during the Mesoscale Alpine Programme: from synoptic scale to turbulenceQuart J Roy Met Soc12921712193CrossRefGoogle Scholar
  18. Mayr, GJ, Gohm, A 20002D airflow over a double bell-shaped mountainMeteorol Atmos Phys721327CrossRefGoogle Scholar
  19. Mayr, GJ, Armi, L, Arnold, S, Banta, RM, Darby, LS, Durran, DR, Flamant, C, Gabersek, S, Gohm, A, Mayr, R, Mobbs, S, Nance, LB, Vergeiner, I, Vergeiner, J, Whiteman, CD 2004Gap flow measurements during the Mesoscale Alpine ProgrammeMeteorol Atmos Phys8699119CrossRefGoogle Scholar
  20. Mlawer, EJ, Taubman, SJ, Brown, PD, Iacono, MJ, Clough, SA 1997Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwaveJ Geophys Res1021666316682CrossRefGoogle Scholar
  21. Post, MJ, Cupp, RE 1990Optimizing a pulsed Doppler lidarAppl Optics2941454158CrossRefGoogle Scholar
  22. Reisner, J, Rasmussen, RM, Bruintjes, RT 1998Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale modelQuart J Roy Met Soc12410711107CrossRefGoogle Scholar
  23. Schär, C, Leuenberger, D, Fuhrer, O, Lüthi, D, Girard, C 2002A new terrain-following vertical coordinate for atmospheric prediction modelsMon Wea Rev13024592480CrossRefGoogle Scholar
  24. Shafran, PC, Seaman, NL, Gayno, GA 2000Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study (LMOS)J Appl Meteorol39412426CrossRefGoogle Scholar
  25. Smith, RB 1987Aerial observations of the Yugoslavian BoraJ Atmos Sci44269297CrossRefGoogle Scholar
  26. Zängl, G 2002aStratified flow over a mountain with a gap. Linear theory and numerical simulationsQuart J Roy Met Soc128927949CrossRefGoogle Scholar
  27. Zängl, G 2002bAn improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topographyMon Wea Rev13014231432CrossRefGoogle Scholar
  28. Zängl, G 2003aDeep and shallow south foehn in the region of Innsbruck: typical features and semi-idealized numerical simulationsMeteorol Atmos Phys83237261Google Scholar
  29. Zängl, G 2003bA generalized sigma coordinate system for the MM5Mon Wea Rev13128752884CrossRefGoogle Scholar
  30. Zängl, G, Gohm, A, Geier, G 2004aSouth foehn in the Wipp Valley – Innsbruck region: numerical simulations of the 24 October 1999 case (MAP-IOP 10)Meteorol Atmos Phys86213243CrossRefGoogle Scholar
  31. Zängl, G, Chimani, B, Häberli, C 2004bNumerical simulations of the foehn in the Rhine Valley on 24 October 1999 (MAP-IOP 10)Mon Wea Rev132368389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G. Zängl
    • 1
  • A. Gohm
    • 2
  1. 1.Meteorologisches Institut der Universität MünchenMünchenGermany
  2. 2.Institut für Meteorologie und Geophysik, Universität InnsbruckAustria

Personalised recommendations