Meteorology and Atmospheric Physics

, Volume 90, Issue 3–4, pp 225–243

The 2001 Mesoscale Convective Systems over Iberia and the Balearic Islands

  • R. García-Herrera
  • D. Barriopedro
  • E. Hernández
  • D. Paredes
  • J. F. Correoso
  • L. Prieto


This paper characterizes Mesoscale Convective Systems (MCSs) during 2001 over Iberia and the Balearic Islands and their meteorological settings. Enhanced infrared Meteosat imagery has been used to detect their occurrence over the Western Mediterranean region between June and December 2001 according to satellite-defined criteria based on the MCS physical characteristics.

Twelve MCSs have been identified. The results show that the occurrence of 2001 MCSs is limited to the August–October period, with September being the most active period. They tend to develop during the late afternoon or early night, with preferred eastern Iberian coast locations and eastward migrations. A cloud shield area of 50.000 km2 is rarely exceeded. When our results are compared with previous studies, it is possible to assert that though 2001 MCS activity was moderate, the convective season was substantially less prolonged than usual, with shorter MCS life cycles and higher average speeds. The average MCS precipitation rate was 3.3 mm·h−1 but a wide range of values varying from scarce precipitation to intense events of 130 mm·24 h−1 (6 September) were collected. The results suggest that, during 2001, MCS rainfall was the principal source of precipitation in the Mediterranean region during the convective season, but its impact varied according to the location.

Synoptic analysis based on NCEP/NCAR reanalysis show that several common precursors could be identified over the Western Mediterranean Sea when the 2001 MCSs occurred: a low-level tongue of moist air and precipitable water (PW) exceeding 25 mm through the southern portion of the Western Mediterranean area, low-level zonal warm advection over 2 °C·24 h−1 towards eastern Iberia, a modest 1000–850 hPa equivalent potential temperature (θe) difference over 20 °C located close to the eastern Iberian coast, a mid level trough (sometimes a cut-off low) over Northern Africa or Southern Spain and high levels geostrophic vorticity advection exceeding 12·10−10 s−2 over eastern Iberia and Northern Africa. Finally, the results suggest that synoptic, orographic and a warm-air advection were the most relevant forcing mechanisms during 2001.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, CJ, Arritt, RW 1988Mesoscale Convective Complexes and persistent elongated convective systems over the United States during 1992 and 1993.Mon Wea Rev126578599CrossRefGoogle Scholar
  2. Ashley, WS, Mote, TL, Dixon, PG, Trotter, SL, Powell, EJ, Durkee, JD, Grundstein, AJ 2003Distribution of Mesoscale Convective Complex rainfall in the United States.Mon Wea Rev13130033017CrossRefGoogle Scholar
  3. Augustine, JA, Caracena, F 1994Lower-tropospheric precursors to nocturnal MCS development over the Central United States.Wea Forecast9116135CrossRefGoogle Scholar
  4. Augustine, JA, Howard, KW 1988Mesoscale Convective Complexes over the United States during 1985.Mon Wea Rev116685701CrossRefGoogle Scholar
  5. Augustine, JA, Howard, KW 1991Mesoscale Convective Complexes over United States during 1986 and 1987.Mon Wea Rev11915751589CrossRefGoogle Scholar
  6. Barnes, SL 1985Omega diagnostics as a supplement to LFM/MOS guidance in weakly forced convective situations.Mon Wea Rev11321222141CrossRefGoogle Scholar
  7. Cana L (1997) Desarrollo de la actividad frontogenética en diferentes situaciones de precipitación intensa. M.S. thesis, Dept. of Atmospheric Sciences, Universidad Complutense de Madrid, 197 pp (in Spanish)Google Scholar
  8. Canalejo M, Carretero O, Riosalido R (1993) Sistemas Convectivos de Mesoescala 1990. Tech. Note 9, Instituto Nacional de Meteorología, Madrid, 139 pp (in Spanish)Google Scholar
  9. Canalejo M, Carretero O, Riosalido R (1994) Sistemas Convectivos de Mesoescala 1992. Tech. Note 14, Instituto Nacional de Meteorología, Madrid, 54 pp (in Spanish)Google Scholar
  10. Caracena, F, Fristch, JM 1983Focusing mechanism in the Texas hill country flash floods of 1978.Mon Wea Rev11123192332CrossRefGoogle Scholar
  11. Carretero O, Canalejo M, Riosalido R (1993) Sistemas Convectivos de Mesoescala 1991. Tech. Note 12, Instituto Nacional de Meteorología, Madrid, 122 pp (in Spanish)Google Scholar
  12. Cotton, WR, Lin, M, McAnelly, R, Tremback, C 1989A composite model of Mesoscale Convective Complexes.Mon Wea Rev117765783CrossRefGoogle Scholar
  13. Doswell, CA,III 1987The distinction between large-scale and mesoscale contribution to severe convection: a case study example.Wea Forecast2316CrossRefGoogle Scholar
  14. Doswell, CA,III, Brooks, HE, Maddox, RA 1996Flash flood forecasting: an ingredients-based methodology.Wea Forecast11560581CrossRefGoogle Scholar
  15. Doswell, CA,III, Ramis, C, Romero, R, Alonso, S 1998aA diagnostic study of three heavy precipitation episodes in the Western Mediterranean region.Wea Forecast13102124CrossRefGoogle Scholar
  16. Durran, DR, Snellman, LW 1987The diagnosis of synoptic-scale vertical motion in an operational environment.Wea Forecast21731CrossRefGoogle Scholar
  17. Elvira B, Carretero O, Riosalido R (1996) Sistemas Convectivos de Mesoescala 1994. Tech. Note 24 Instituto Nacional de Meteorología, Madrid, 146 pp (in Spanish)Google Scholar
  18. Fritsch, JM, Kane, RJ, Chelius, CR 1986The contribution of Mesoscale Convective Weather Systems to the warm-season precipitation in the United States.J Appl Meteorol2513331345CrossRefGoogle Scholar
  19. Fu, R, AD, Del Genio, Rossow, WB 1990Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances.J Climate311291152Google Scholar
  20. Galway, JG 1956The lifted index as a predictor of latent instability.Bull Am Meteor Soc37528529Google Scholar
  21. García-Dana F, Font R, Rivera A (1982) Meteorological situation during the heavy rain event in the eastern zone of Spain during October-82. Instituto Nacional de Meteorología, Madrid, 80 ppGoogle Scholar
  22. Hernández, E, Cana, L, Díaz, J, García, R, Gimeno, L 1998Mesoscale Convective Complexes over the western Mediterranean area during 1990–1994.Meteorol Atmos Phys68112CrossRefGoogle Scholar
  23. Homar, V, Romero, R, Ramis, R, Alonso, S 2002Numerical study of the October 2000 torrential precipitation event over eastern Spain: analysis of the synoptic-scale stationarity.Ann Geophys2020472066Google Scholar
  24. Hoskins, BJ, Pedder, MA 1980The diagnosis of middle latitude synoptic development.Quart J Roy Meteor Soc106707719CrossRefGoogle Scholar
  25. Jirak, IL, Cotton, WR, McAnelly, RL 2003Satellite and radar survey of Mesoscale Convective System development.Mon Wea Rev13124282449CrossRefGoogle Scholar
  26. Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, Iredell, M, Saha, S, White, G, Woollen, J, Zhu, Y, Leetmaa, A, Reynolds, B, Chelliah, M, Ebisuzaki, W, Higgins , W, Janowiak, J, Mo, KC, Ropelewski, C, Wang, J, Jenne, R, Joseph, D 1996The NCEP/NCAR 40-year Reanalysis Project.Bull Am Meteor Soc77437471CrossRefGoogle Scholar
  27. Kane, RJ, Chelius, CR, Fritsch, JM 1987Precipitation characteristics of Mesoscale Convective Weather Systems.J Appl Meteorol2613451357CrossRefGoogle Scholar
  28. Laing, AG, Fritsch, JM 1997The global population of mesoscale convective complexes.Quart J Roy Meteor Soc123389405CrossRefGoogle Scholar
  29. Laing, AG, Fritsch, JM 2000The large-scale environments of the global populations of Mesoscale Convective Complexes.Mon Wea Rev12827562776CrossRefGoogle Scholar
  30. Llasat MC (1987) Heavy rain events in Catalonia: Genesis, evolution and mechanism. PhD Diss., Universidad de Barcelona, 250 pp (in Spanish)Google Scholar
  31. Machado, LAT, Rossow, WB, Guedes, RL, Walker, AW 1998Life cycle variations of Mesoscale Convective Systems over the Americas.Mon Wea Rev12616301654CrossRefGoogle Scholar
  32. Maddox, RA 1980Mesoscale Convective Complexes.Bull Am Meteor Soc6113741387Google Scholar
  33. Maddox, RA 1983Large-scale meteorological conditions associated with midlatitude Mesoscale Convective Complexes.Mon Wea Rev11114751493CrossRefGoogle Scholar
  34. Maddox, RA, Vonder Haar, TH 1979Covariance analyses of satellite-derived mesoscale wind fields.J Appl Meteorol1813271334CrossRefGoogle Scholar
  35. Maddox, RA, Rodgers, DM, Howard, KW 1982Mesoscale Convective Complexes over the United States during 1981 – Annual summary.Mon Wea Rev11015011514CrossRefGoogle Scholar
  36. Mapes, BE, Houze, RA 1993Cloud clusters and superclusters over the oceanic warm pool.Mon Wea Rev12113981416CrossRefGoogle Scholar
  37. Martín F, Elizaga F, Carretero O, Riosalido R (1994) Sistemas Convectivos de Mesoescala 1993. Tech. Note 15, Instituto Nacional de Meteorología, Madrid, 136 pp (in Spanish)Google Scholar
  38. McAnelly, RL, Cotton, WR 1986Meso-β-scale characteristics of an episode of Meso-α-scale Convective Complexes.Mon Wea Rev11417401770CrossRefGoogle Scholar
  39. McAnelly, RL, Cotton, WR 1989The precipitation life cycle of Mesoescale Convective Complexes over the central United States.Mon Wea Rev117784808CrossRefGoogle Scholar
  40. Miller, D, Fritsch, JM 1991Mesoscale Convective Complexes in the Western Pacific Region.Mon Wea Rev11929782992CrossRefGoogle Scholar
  41. Ramis, C, Llasat, MC, Genovés, A, Jansá, A 1994The October-1987 floods in Catalonia: Synoptic and mesoscale mechanism.Meteorol Appl1337350Google Scholar
  42. Ramis, C, Romero, R, Homar, V, Alonso, S, Alarcón, M 1998Diagnosis and numerical simulation of a torrential precipitation event in Catalonia (Spain).Meteorol Atmos Phys69121CrossRefGoogle Scholar
  43. Riosalido R (1991) Caracterización mediante imágenes de satélite de los Sistemas Convectivos de Mesoescala durante la Campaña Previmet Mediterráneo-89. II Simposio Nacional de Predicción, Instituto Nacional de Meteorología, Madrid, pp 135–148 (in Spanish)Google Scholar
  44. Riosalido R, Elizaga F, Carretero O, Martín F (1998) Climatología satélite de Sistemas Convectivos de Mesoescala en las proximidades de la Península Ibérica. Aplicación a la predicción de lluvias torrenciales. Madrid: Tech. Report-29, CICYT Project CLI95-1776, Instituto Nacional de Meteorología, 200 pp (in Spanish)Google Scholar
  45. Rivera A (1987) Precipitaciones torrenciales de otoño en el área mediterránea: Algunos criterios de análisis, diagnosis y predicción. Tech. Note, Instituto Nacional de Meteorología, Madrid, 18 pp (in Spanish)Google Scholar
  46. Rodgers, DM, Howard, KW, Johnston, EC 1983Mesoscale Convective Complexes over the United States during 1982-annual summary.Mon Wea Rev11123632369CrossRefGoogle Scholar
  47. Rodgers, DM, Magnano, MJ, Arns, JH 1985Mesoscale Convective Complexes over the United States during 1983.Mon Wea Rev113888901CrossRefGoogle Scholar
  48. Romero, R, Doswell, CA,III, Ramis, C 2000Mesoscale numerical study of two cases of long-lived quasi-stationary convective systems over Eastern Spain.Mon Wea Rev12837313751CrossRefGoogle Scholar
  49. Watson, AI, Meitín, JG, Cunning, JB 1988Evolution of the kinematic structure and precipitation characteristics of a Mesoscale Convective System on 20, May 1979.Mon Wea Rev11615551567CrossRefGoogle Scholar
  50. Zipser EJ (1982) Use a conceptual model of the life-cycle of mesoscale convective systems to improve very-short-range forecasts. New York Nowcasting: K.A. Browning Academic Press, pp 191–204Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • R. García-Herrera
    • 1
  • D. Barriopedro
    • 1
  • E. Hernández
    • 1
  • D. Paredes
    • 1
  • J. F. Correoso
    • 1
  • L. Prieto
    • 1
  1. 1.Departamento de Física de la Tierra II, Fac. De C.C FísicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations