Meteorology and Atmospheric Physics

, Volume 92, Issue 1–2, pp 67–82 | Cite as

A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms

  • A. Seifert
  • K. D. Beheng


A systematic modeling study investigates the effects of cloud condensation nuclei (CCNs) on the evolution of mixed-phase deep convective storms. Following previous studies the environmental conditions like buoyancy and vertical wind shear are varied to simulate different storm types like ordinary single cells, multicells and supercells. In addition, the CCN characteristics are changed from maritime to continental conditions. The results reveal very different effects of continentality on the cloud microphysics and dynamics of the different storms. While a negative feedback on total precipitation and maximum updraft velocity is found for ordinary single cells and supercell storms, a positive feedback exists for multicell cloud systems. The most important link between CCN properties, microphysics and dynamics is the release of latent heat of freezing.


Latent Heat Total Precipitation Wind Shear Vertical Wind Condensation Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, G 1999Parallel processing in regional climatology: The parallel version of the “Karlsruhe Atmospheric Mesoscale Model” (KAMM).Parallel Comput25777787CrossRefGoogle Scholar
  2. Baldauf M (2003) Das mesoskalige Simulationsmodell KAMM2. Internal report (in German), Institut für Meteorologie und Klimaforschung, KarlsruheGoogle Scholar
  3. Banta, R, Hanson, K 1987Sensitivity studies on the continentality of a numerically simulated cumulonimbus.J Appl Meteor26275286CrossRefGoogle Scholar
  4. Bertram, I, Seifert, A, Beheng, KD 2004The evolution of liquid/ice content of a mid-latitude convective storm derived from radar data and results from a cloud-resolving model.Meteorol Zeitschr13221232Google Scholar
  5. Bohren, CF, Battan, LJ 1982Radar backscattering of microwaves by spongy ice spheres.J Atmos Sci3926232628CrossRefGoogle Scholar
  6. Boris, J, Book, D 1973Flux corrected transport I: SHASTA, a fluid transport algorithm that works.J Comput Phys113869CrossRefGoogle Scholar
  7. Cotton, WR, Stephens, MA, Nehrkorn, T, Tripoli, GJ 1982The Colorado State University three-dimensional cloud/mesoscale model – 1982. Part II: An ice-phase parameterization.J Rech Atmos16295320Google Scholar
  8. Fritsch J, Carbone R (2003) Research and development to improve quantitative precipitation forecasts in the warm season. Synopsis of the 2002 USWRP workshop (available from Dr. R. Carbone, NCAR, P.O. Box 3000 Boulder, CO 80307)Google Scholar
  9. Houze, RA, Schmid, W, Fovell, RG, Schiesser, H-H 1993Hailstorms in Switzerland: Left movers, right movers, and false hooks.Mon Wea Rev12133453370Google Scholar
  10. Johnson, DE, Wang, PK, Straka, JM 1993Numerical simulation of the 2 August 1981 CCOPE supercell storm with and without ice microphysics.J Appl Meteor32745759Google Scholar
  11. Khain, AP, Sednev, IL 1996Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model.Atmos Res4377110Google Scholar
  12. Khain, A, Pokrovsky, A, Sednev, I 1999Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: Numerical experiments with a spectral microphysics cloud ensemble model.Atmos Res52195220Google Scholar
  13. Khain, A, Ovtchinnikov, M, Pinsky, M, Pokrovsky, A, Krugliak, H 2000Notes on the state-of-the-art numerical modeling of cloud microphysics.Atmos Res55159224Google Scholar
  14. Klemp, JB 1987Dynamics of tornadic thunderstorms.Ann Rev Fluid Mech19369402CrossRefGoogle Scholar
  15. Klemp, JB, Wilhelmson, RB 1978The simulation of three-dimensional convective storm dynamics.J Atmos Sci3510701096Google Scholar
  16. Lin, Y-L, Farley, RD, Orville, H 1983Bulk parameterization of the snow field in a cloud model.J Clim Appl Meteorol2210651092CrossRefGoogle Scholar
  17. Lynn, B, Khain, A, Dudhia, J, Rosenfeld, D, Pokrovsky, A, Seifert, A 2005aSpectral (Bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results.Mon Wea Rev1334458Google Scholar
  18. Lynn, B, Khain, A, Dudhia, J, Rosenfeld, D, Pokrovsky, A, Seifert, A 2005bSpectral (Bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPE rain event with a squall-line.Mon Wea Rev1335971Google Scholar
  19. Manton M, Cotton W (1977) Formulation of approximate equations for modeling moist convection on the mesoscale. Technical report, Colorado State UniversityGoogle Scholar
  20. McCaul, EW, Weisman, ML 2001The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental bouyancy and shear profiles.Mon Wea Rev129664687Google Scholar
  21. Ovtchinnikov, M, Kogan, YL 2000An investigation of ice production mechanisms in small cumuliform clouds using a 3d model with explicit microphysics. Part I: Model description.J Atmos Sci5729893003Google Scholar
  22. Rutledge, SA, Hobbs, PV 1984The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands.J Atmos Sci4129492972CrossRefGoogle Scholar
  23. Sauvageot H (1992) Radar meteorology. Boston: Artech HouseGoogle Scholar
  24. Schlesinger, RE 1975A three-dimensional model of an isolated deep convective cloud: Preliminary results.J Atmos Sci32934957CrossRefGoogle Scholar
  25. Schlesinger, RE 1994Heat, moisture, and momentum budgets of isolated deep midlatitude and tropical convective clouds as diagnosed from three-dimensional model output. Part I: Control experiments.J Atmos Sci5136493673CrossRefGoogle Scholar
  26. Schlesinger, RE 1999Heat, moisture, and momentum budgets of isolated deep midlatitude and tropical convective clouds as diagnosed from three-dimensional model output. Part II: Sensitivity to ice phase and small changes in ambient shear strength and low-level moisture supply.J Atmos Sci5635203543CrossRefGoogle Scholar
  27. Seifert A, Beheng KD (2005) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteorol Atmos Phys (this issue, pp 45–66)Google Scholar
  28. Seifert A, Khain A, Pokrovsky A, Beheng KD (2005) A comparison of spectral bin and two-moment bulk mixed phase cloud microphysics. Atmos Res (in print)Google Scholar
  29. Straka, JM, Anderson, JR 1993Numerical simulations of microburst-producing storms: Some results from storm observed during COHMEX.J Atmos Sci5013291348CrossRefGoogle Scholar
  30. Tripoli, G, Cotton, W 1986An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Three-dimensional numerical simulation.J Atmos Sci43894913CrossRefGoogle Scholar
  31. Weisman, ML, Klemp, JB 1982The dependency of numerically simulated convective storms on vertical wind shear and bouyancy.Mon Wea Rev110504520Google Scholar
  32. Weisman, ML, Klemp, JB 1984The structure and classification of numerically simulated convective storms in directionally varying wind shears.Mon Wea Rev11224792498Google Scholar
  33. Weisman, ML, Rotunno, R 2000The use of vertical wind shear versus helicity in interpreting supercell dynamics.J Atmos Sci5714521472CrossRefGoogle Scholar
  34. Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K (1995) Advanced Regional Prediction System (ARPS) Version 4.0 User’s Guide. Oklahoma: Center for Analysis and Prediction of StormsGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • A. Seifert
    • 1
  • K. D. Beheng
    • 1
  1. 1.Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations