Meteorology and Atmospheric Physics

, Volume 92, Issue 1–2, pp 45–66 | Cite as

A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description

  • A. Seifert
  • K. D. Beheng


A two-moment microphysical parameterization for mixed-phase clouds was developed to improve the explicit representation of clouds and precipitation in mesoscale atmospheric models. The scheme predicts the evolution of mass as well as number densities of the five hydrometeor types cloud droplets, raindrops, cloud ice, snow and graupel. Since the number concentrations of all these hydrometeors are calculated explicitly, all relevant homogenous and heterogenous nucleation processes have been parameterized including the activation of cloud condensation nuclei, which is not predicted in most state-of-the-art cloud resolving models. Therefore the new scheme can discriminate between continental and maritime conditions and can be used for investigations of aerosol effects on the precipitation formation in mixed-phase clouds. In addition, the scheme includes turbulence effects on droplet coalescence, collisional breakup of raindrops and size-dependent collision efficiencies. A new general approximation of the collection kernels and the corresponding collision integrals is introduced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. auf der Maur, AN 2001Statistical tools for drop size distributions: Moments and generalized gamma.J Atmos Sci58407418Google Scholar
  2. Beard, KV, Ochs, HT 1995Collisions between small precipitation drops. Part II: Formulas for coalescence, temporary coalescence, and satellites.J Atmos Sci5239773996CrossRefGoogle Scholar
  3. Beheng, KD 1981Stochastic riming of plate-like and columnar ice crystals.Pure Appl Geophys119820830CrossRefGoogle Scholar
  4. Beheng, KD 1982A numerical study on the combined action of droplet coagulation, ice particle riming and the splintering process concerning maritime cumuli.Contrib Atmos Phys55201214Google Scholar
  5. Beheng, KD 1994A parameterization of warm cloud microphysical conversion processes.Atmos Res33193206Google Scholar
  6. Beheng, KD, Doms, G 1986A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations.Contrib Atmos Phys596684Google Scholar
  7. Berry EX (1968) Modification of the warm rain process. In: Proc. 1st Natl. Conf. Wea. Modification, Boston, pp 81–85. Amer Meteor SocGoogle Scholar
  8. Bertram, I, Seifert, A, Beheng, KD 2004The evolution of liquid/ice content of a mid-latitude convective storm derived from radar data and results from a cloud-resolving model.Meteorol Zeitschr13221232Google Scholar
  9. Bigg, EK 1953The formation of atmospheric ice crystals by the freezing of droplets.Quart J Roy Meteor Soc79510519Google Scholar
  10. Cohard, J-M, Pinty, J-P 2000aA comprehensive two-moment warm microphysical bulk scheme. I: Description and tests.Quart J Roy Meteor Soc12618151842Google Scholar
  11. Cohard, J-M, Pinty, J-P 2000bA comprehensive two-moment warm microphysical bulk scheme. II: 2D experiments with a non-hydrostatic model.Quart J Roy Meteor Soc12618431859Google Scholar
  12. Cohard, J-M, Pinty, J-P, Bedos, C 1998Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra.J Atmos Sci5533483357CrossRefGoogle Scholar
  13. Cohard, J-M, Pinty, J-P, Suhre, K 2000On the parameterization of activation spectra from cloud condensation nuclei microphysical properties.J Geophys Res1051175311766CrossRefGoogle Scholar
  14. Considine, G, Curry, JA 1996A statistical model of drop-size spectra for stratocumulus clouds.Quart J Roy Meteor Soc122611634CrossRefGoogle Scholar
  15. Cotton, R, Field, P 2002Ice nucleation characteristics of an isolated wave cloud.Quart J Roy Meteor Soc12824172437CrossRefGoogle Scholar
  16. Cotton, W, Pielke, R, Walko, R, Liston, G, Tremback, C, Jiang, H, McAnelly, R, Harrington, J, Nicholls, M, Carrio, C, McFadden, J 2003RAMS 2001: Current status and future directions.Meteorol Atmos Phys82529CrossRefGoogle Scholar
  17. Cotton, WR, Stephens, MA, Nehrkorn, T, Tripoli, GJ 1982The Colorado State University three-dimensional cloud/mesoscale model – 1982. Part II: An ice-phase parameterization.J Rech Atmos16295320Google Scholar
  18. Cotton, WR, Tripoli, GJ, Rauber, RM, Mulvihill, EA 1986Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall.J Clim Appl Meteor2516581680CrossRefGoogle Scholar
  19. Doms, G, Beheng, KD 1986Mathematical formulation of self-collection, autoconversion and accretion rates of cloud and raindrops.Meteorol Rdsch3998102Google Scholar
  20. Feingold, G, Walko, RL, Stevens, B, Cotton, WR 1998Simulations of marine stratocumulus using a new microphysical parameterization scheme.Atmos Res47–48505528Google Scholar
  21. Ferrier, BS 1994A double-moment multiple-phase four-class bulk ice scheme. Part I: Description.J Atmos Sci51249280Google Scholar
  22. Flatau PJ, Tripoli GJ, Verlinde J, Cotton WR (1989) The CSU-RAMS Cloud Microphysics Module: General Theory and Code Documentation. Department of Atmospheric Sciences, Colorado State UniversityGoogle Scholar
  23. Hall, WD, Pruppacher, HR 1976The survival of ice particles falling from cirrus clouds in subsaturated air.J Atmos Sci3319952006CrossRefGoogle Scholar
  24. Harrington, JY, Meyers, MP, Walko, RL, Cotton, WR 1995Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results.J Atmos Sci5243444366Google Scholar
  25. Heymsfield, AJ, Kajikawa, M 1987An improved approach to calculating terminal velocities of plate-like crystals and graupel.J Atmos Sci4410881099CrossRefGoogle Scholar
  26. Hu, Z, Srivastava, RC 1995Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations.J Atmos Sci5217611783Google Scholar
  27. Jeffrey, CA, Austin, PH 1997Homogenous nucleation of supercooled water: Results from a new equation of state.J Geophys Res1022526925279Google Scholar
  28. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteor Monogr 32. Boston: Amer Meteor SocGoogle Scholar
  29. Khain, A, Ovtchinnikov, M, Pinsky, M, Pokrovsky, A, Krugliak, H 2000Notes on the state-of-the-art numerical modeling of cloud microphysics.Atmos Res55159224Google Scholar
  30. Khain, AP, Rosenfeld, D, Pokrovsky, A 2001Simulating convective clouds with sustained supercooled liquid water down to −37.5 °C using a spectral microphysics model.Geophys Res Lett2838873890CrossRefGoogle Scholar
  31. Kogan, YL, Martin, WJ 1994Parameterization of bulk condensation in numerical cloud models.J Atmos Sci5117281739CrossRefGoogle Scholar
  32. Lin, Y-L, Farley, RD, Orville, H 1983Bulk parameterization of the snow field in a cloud model.J Clim Appl Meteorol2210651092CrossRefGoogle Scholar
  33. List, R 1988A linear radar reflectivity-rainrate relationship for steady tropical rain.J Atmos Sci4535643572CrossRefGoogle Scholar
  34. Liu, Y, Laiguang, Y, Weinong, Y, Feng, L 1995On the size distribution of cloud droplets.Atmos Res35201216Google Scholar
  35. Locatelli, JD, Hobbs, PV 1974Fall speeds and masses of solid precipitation particles.J Geophys Res7921852197Google Scholar
  36. Long, AB 1974Solutions to the droplet collection equation for polynomial kernels.J Atmos Sci3110401052Google Scholar
  37. Low, TB, List, R 1982Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup.J Atmos Sci3915911606Google Scholar
  38. Manton M, Cotton W (1977) Formulation of approximate equations for modeling moist convection on the mesoscale. Technical report, Colorado State UniversityGoogle Scholar
  39. Mayer F (2000) Numerische Simulation des Zerfallsprozesses von Regentropfen. Diploma thesis, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum Karlsruhe, Karlsruhe (in German)Google Scholar
  40. Meyers, MP, DeMott, PJ, Cotton, WR 1992New primary ice-nucleation parameterizations in an explicit cloud model.J Appl Meteor31708721CrossRefGoogle Scholar
  41. Meyers, MP, Walko, RL, Harrington, JY, Cotton, WR 1997New RAMS cloud microphysics parameterization. Part II: The two-moment scheme.Atmos Res45339Google Scholar
  42. Mizuno, H 1990Parameterization of the accretion process between different precipitation elements.J Meteor Soc Jap68395398Google Scholar
  43. Murakami, M 1990Numerical modeling of dynamical and microphysical evolution of an isolated convectivecloud – The 19 July 1981 CCOPE cloud.J Meteor Soc Jap68107128Google Scholar
  44. Pinsky, M, Khain, A 2002Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds.Quart J Roy Meteor Soc128501533CrossRefGoogle Scholar
  45. Pinsky, M, Khain, A, Shapiro, M 2000Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow.Atmos Res53131169Google Scholar
  46. Pinsky, M, Khain, A, Shapiro, M 2001Collision efficiency of drops in a wide range of Reynolds numbers: Effect of pressure on spectrum evolution.J Atmos Sci58742764CrossRefGoogle Scholar
  47. Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Dordrecht: Kluwer Academic PublishersGoogle Scholar
  48. Reisner, J, Rasmussen, RM, Bruintjes, RT 1998Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Quart J Roy Meteor Soc12410711107CrossRefGoogle Scholar
  49. Rogers, RR, Baumgardner, D, Ethier, SA, Carter, DA, Ecklund, WL 1993Comparison of raindrop size distributions measured by radar wind profiler and by airplane.J Appl Meteor32694699CrossRefGoogle Scholar
  50. Rosenfeld, D 2000Suppression of rain and snow by urban and industrial air pollution.Science28717931796CrossRefGoogle Scholar
  51. Rutledge, SA, Hobbs, PV 1984The mesoscale and microscale structure and organization of clouds and precipitation in mid latitude cyclones XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands.J Atmos Sci4129492972CrossRefGoogle Scholar
  52. Seifert A (2002) Parametrisierung wolkenmikrophysikalischer Prozesse und Simulation konvektiver Mischwolken. Ph. D. thesis, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum Karlsruhe, Karlsruhe (in German)Google Scholar
  53. Seifert, A, Beheng, KD 2001A double-moment parameterization for simulating autoconversion, accretion and selfcollection.Atmos Res59–60265281Google Scholar
  54. Seifert A, Khain A, Pokrovsky A, Beheng KD (2005) A comparison of spectral bin and two-moment bulk mixed phase cloud microphysics. Atmos Res (in print)Google Scholar
  55. Suzuki, E 1964Hyper gamma distribution and its fitting to rainfall data.Pap Meteor Geophys153151Google Scholar
  56. Tao, W-K, Simpson, J, Baker, D, Braun, S, Chou, M-D, Ferrier, B, Johnson, D, Khain, A, Lang, S, Lynn, B, Shie, C-L, Starr, D, Sui, C-H, Wang, Y, Wetzel, P 2003Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model.Meteorol Atmos Phys8297137CrossRefGoogle Scholar
  57. Verlinde, J, Cotton, WR 1993Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model.Mon Wea Rev12127762793Google Scholar
  58. Vohl, O, Mitra, SK, Wurzler, SC, Pruppacher, HR 1999A wind tunnel study of the effects of turbulence on the growth of cloud drops by collision and coalescence.J Atmos Sci5640884099CrossRefGoogle Scholar
  59. Wacker, U, Seifert, A 2001Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description.Atmos Res581939Google Scholar
  60. Weisman, ML, Klemp, JB 1982The dependency of numerically simulated convective storms on vertical wind shear and bouyancy.Mon Wea Rev110504520Google Scholar
  61. Wisner, C, Orville, HD, Myers, C 1972A numerical model of a hail-bearing cloud.J Atmos Sci2911601181CrossRefGoogle Scholar
  62. Zawadzki, I, AM, de Agostinho 1988Equilibrium raindrop size distributions in tropical rain.J Atmos Sci4534523459CrossRefGoogle Scholar
  63. Ziegler, CL 1985Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing.J Atmos Sci4214871509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • A. Seifert
    • 1
  • K. D. Beheng
    • 1
  1. 1.Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations