Meteorology and Atmospheric Physics

, Volume 90, Issue 3–4, pp 159–164

Toward increasing the accuracy and realism of future optical turbulence calculations

  • A. Tunick


Due to the increased use of laser and ground-to-satellite communications the need for reliable optical turbulence information is growing. Optical turbulence information is important because it describes an atmospheric effect that can degrade the performance of electromagnetic systems and sensors, e.g., free-space optical communications and infrared imaging. However, analysis of selected past research indicates that there are some areas (i.e., data and models) in which optical turbulence information is lacking. For example, line-of-sight optical turbulence data coupled with atmospheric models in hilly terrain, coastal areas, and within cities are few in number or non-existent. In addition, the bulk of existing atmospheric computer models being used to provide estimates of optical turbulence are basically one-dimensional in nature and assume uniform turbulence conditions over large areas. As a result, current optical turbulence theory and models may be deficient and in error for inhomogeneous (nonuniform) turbulence conditions, such as those that occur in urban environments or environments with changing topography and energy budgets. While it is anticipated that theoretical advances in environmental physics (and like disciplines) will be a catalyst for much new work this area, in the interim, we suggest that some very practical computational research can be performed to extend existing low-atmospheric turbulence and micrometeorological calculations beyond current limitations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, EL 1988Estimating Cn2 over snow and sea ice from meteorological data.J Optic Soc Am5481495Google Scholar
  2. Beland RR (1993) Propagation through atmospheric turbulence. In: The Infrared Electro-Optical Systems Handbook (Accetta JS, Shumaker DL, eds). SPIE Press Monograph, PM10, Bellingham, WAGoogle Scholar
  3. Brunner, FK, Angus-Leppan, PV 1984Geodetic refraction–effects of electromagnetic wave propagation through the atmosphere.SpringerNew York213Google Scholar
  4. Businger, S, McLaren, R, Ogasawara, R, Simons, D, Wainscoat, RJ 2002Starcasting.Bull Amer Meteor Soc83858871CrossRefGoogle Scholar
  5. Chiba, T 1971Spot dancing of the laser beam propagated through the turbulent atmosphere.Appl Optics1024562461Google Scholar
  6. Coulman, CE, Vernin, J, Fuchs, A 1995Optical seeing–mechanism of formation of thin turbulent laminae in the atmosphere.Appl Optics3454615474Google Scholar
  7. Donaldson C duP (1973) Construction of a dynamic model for the production of atmospheric turbulence and the dispersion of atmospheric pollutants. In: Workshop on Micrometeorology (Haugen DA, ed). Boston: Amer Meteor Soc, 313–392Google Scholar
  8. Drobinski, P, Dabas, AM, Delville, P, Flamant, PH, Pelon, J, Hardesy, RM 1999Refractive index structure parameter in the planetary boundary layer: Comparison of measurements taken with a 10.6 micron coherent lidar, a 0.9 micron scintillometer, and in-situ sensors.Appl Optics3816481656Google Scholar
  9. Frederickson, PA, Davidson, KL, Zeisse, CR, Bendall, CS 2000Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods.J Appl Meteor3917701783Google Scholar
  10. Fried, DL, Mevers, GE, Keister, MP 1967Measurements of laser beam scintillation in the atmosphere.J Opt Soc Amer57787797Google Scholar
  11. Gurvich, AS, Kallistratova, MA, Time, NS 1968Fluctuations of the parameters of laser light wave propagating in the atmosphere.Radiofizika1113601370Google Scholar
  12. Hill, RJ 1989Structure functions and spectra of scalar quantities in the inertial-convective and viscous- convective ranges of turbulence.J Atmos Sci4622452251CrossRefGoogle Scholar
  13. Hughes, RJ, Buttler, WT, Kwiat, PG, Lamoreaux, SK, Morgan, GL, Nordholt, JE, Peterson, CG 2000Free-space quantum key distribution.J Mod Optic47549562CrossRefGoogle Scholar
  14. Ishimaru A (1978) The beam wave case and remote sensing. In: Laser beam propagation in the atmosphere (Stronbehn JW, ed). New York: Springer, pp 129–170Google Scholar
  15. Kallistratova, MA, Timanovskiy, DF 1971The distribution of the structure constant of refractive index fluctuations in the atmospheric surface layer.Izv An SSSR Fiz Atmos74648Google Scholar
  16. Kopeika, NS 1998A system engineering approach to imaging.SPIE Optical Engineering PressBellingham, WA679Google Scholar
  17. Mahrt, L 1998Stratified atmospheric boundary layers and breakdown of models.Theor Comp Fluid Dyn11263279CrossRefGoogle Scholar
  18. Mellor, GL, Yamada, T 1982Development of a turbulence closure model for geophysical fluid problems.Rev Geophys20851875Google Scholar
  19. Monin, AS, Obukhov, AM 1954Basic regularity in turbulent mixing in the surface layer of the atmosphere.Tr Akad Nauk SSSR Geofiz Inst24163187Google Scholar
  20. Ochs, GR, Hill, RJ 1985Optical-scintillation method for measuring turbulence inner-scale.Appl Optics2424302432Google Scholar
  21. Parry, G 1981Measurement of atmospheric turbulence induced intensity fluctuation in a laser beam.Opt Acta28715728Google Scholar
  22. Roth, M 2000Review of turbulence over cities.QJRMS126941990CrossRefGoogle Scholar
  23. Strohbehn, JW 1968Line of site wave propagation in the turbulent atmosphere.Proc IEEE5613011318Google Scholar
  24. Tatarski, VI 1971The effects of the turbulent atmosphere on wave propagation.Israel Program for Scientific TranslationsJerusalem472(available as NTIS Technical Translation 68-50464)Google Scholar
  25. Thiermann V, Karipot A, Dirmhirn I, Poschl P, Czekits C (1995) Optical turbulence over paved surfaces. In: Proc. Atmospheric Propagation and Remote Sensing IV SPIE 2471 (Dainty JC, ed), pp 197–203Google Scholar
  26. Tunick A (2002) A critical assessment of selected past research on optical turbulence information in diverse microclimates. ARL-MR-521, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197 (available from DTIC at Scholar
  27. Tunick, A 2003aCN2 model to calculate the micrometeorological influences on the refractive index structure parameter.Environ Modell Softw18165171CrossRefGoogle Scholar
  28. Tunick, A 2003bCalculating the micrometeorological influences on the speed of sound through the atmosphere in forests.J Acoust Soc Amer11417961806CrossRefGoogle Scholar
  29. Tunick A (2003c) A two-dimensional meteorological computer model for the forest canopy. ARL-MR-569, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197 (available from DTIC at Scholar
  30. Tunick, A, Rachele, H, Hansen, FV, Howell, TA, Steiner, JL, Schneider, AD, Evett, SR 1994REBAL ‘92–A cooperative radiation and energy balance field study for imagery and EM propagation.Bull Amer Meteor Soc75421430CrossRefGoogle Scholar
  31. Wesely, ML 1976The combined effect of temperature and humidity fluctuations on refractive index.J Appl Meteor154349CrossRefGoogle Scholar
  32. Wilson KE, Lesh JR, Araki K, Arimoto Y (1997) Overview of the ground-to-orbit lasercom demonstration (GOLD). In: Proc. Free-Space Laser Communication Technologies IX, SPIE 2990 (Mecherle GS, ed), pp 23–30Google Scholar

Copyright information

© Springer-Verlag/Wien 2004

Authors and Affiliations

  • A. Tunick
    • 1
  1. 1.U.S. Army Research Laboratory, Computational and Information Sciences DirectorateAdelphiUSA

Personalised recommendations