Dopamine in psychiatry: a historical perspective

  • Paul Bernard FoleyEmail author
Psychiatry and Preclinical Psychiatric Studies - Review Article


Dopamine is the principal transmitter of several central nervous system pathways originating in the midbrain and critically involved in motor activity, learning and motivation, disruptions of which have been implicated in a number of disorders, including Parkinson disease and schizophrenia. Dopamine played a particularly significant role in the history of neurochemistry. Following a series of investigations between 1957 and 1965, commencing in the laboratory and completed in the clinic, the significance of chemical neurotransmission for normal CNS function was first demonstrated in the case of dopamine.


Central nervous system Dopamine History of the neurosciences Neurochemistry Neurotransmitters Psychiatry Psychopharmacology Schizophrenia 



  1. Andén N-E, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U (1970) Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 11:303–314Google Scholar
  2. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD (2017) The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 22:666–679Google Scholar
  3. Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68Google Scholar
  4. Baumeister AA, Francis JL (2002) Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 11:265–277Google Scholar
  5. Belujon P, Grace AA (2017) Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 20:1036–1046Google Scholar
  6. Bertler Å, Rosengren E (1959) Occurrence and distribution of dopamine in brain and other tissues. Experientia 15:10–11Google Scholar
  7. Birkmayer W, Hornykiewicz O (1961) Der l-3,4-Dioxyphenylalanin (= DOPA)-Effekt bei der Parkinson-Akinese. Wr klin Wschr 73:787–788Google Scholar
  8. Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493Google Scholar
  9. Carlsson A (1988) The current status of the dopamine hypothesis. Neuropsychopharmacology 1:179–186Google Scholar
  10. Carlsson A (1998) Arvid Carlsson. In: LR Squire (ed) The history of neuroscience in autobiography. vol 2, pp 28–66. Academic Press, San DiegoGoogle Scholar
  11. Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276Google Scholar
  12. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on the formation of 3-hydroxytyramine and normetanephrine in mouse brain. Acta Pharmacol 20:140–144Google Scholar
  13. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200Google Scholar
  14. Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264Google Scholar
  15. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483Google Scholar
  16. Dale E, Bang-Andersen B, Sánchez C (2015) Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 95:81–97Google Scholar
  17. Davis KL, Kahn R, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486Google Scholar
  18. Degkwitz R, Frowein R, Kulenkampff C, Mohs U (1960) Über die Wirkungen des L-DOPA beim Menschen und deren Beeinflussung durch Reserpin, Iproniazid und Vitamin B6. Klin Wschr 38:120–123Google Scholar
  19. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337Google Scholar
  20. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wschr 38:1236–1239Google Scholar
  21. Engel J, Carlsson A (1977) Catecholamines and behavior. Curr Dev Psychopharmacol 4:1–32Google Scholar
  22. Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270Google Scholar
  23. Foley PB (2003) The dopamine and l-DOPA story. In: Beans, roots and leaves. A history of the chemical therapy of parkinsonism. Tectum, Marburg, pp 333–387Google Scholar
  24. Foley PB (2014) Sons and daughters beyond your control: episodes in the prehistory of the attention deficit/hyperactivity syndrome. Atten Defic Hyperact Disord 6:125–151Google Scholar
  25. Foley PB (2019) Psychopharmacology: a brief overview of its history. In: Riederer P, Laux G, Mulsant B, Le W, Nagatsu T (eds) NeuroPsychopharmacotherapy. Springer, Vienna (in press) Google Scholar
  26. Hökfelt T (2010) Looking at neurotransmitters in the microscope. Prog Neurobiol 90:101–118Google Scholar
  27. Horn AS, Snyder SH (1971) Chlorpromazine and dopamine: conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proc Natl Acad Sci USA 68:2325–2328Google Scholar
  28. Hornykiewicz O (1992) From dopamine to Parkinson’s disease: a personal research record. In: Samson F, Adelman G (eds) The neurosciences: paths of discovery II. Birkhäuser, Boston, pp 125–147Google Scholar
  29. Johnstone EC, Crow TJ, Frith CD, Carney MW, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 1:848–851Google Scholar
  30. Kendler KS, Schaffner KF (2011) The dopamine hypothesis of schizophrenia: an historical and philosophical analysis. Philos Psychiatr Psychol 18:41–63Google Scholar
  31. Kety SS (1962) Résumé: I. Biochimie. In: Ajuriaguerra JD (ed) Monoamines et système nerveux central. Symposium Bel-Air, Genève, Septembre 1961. Georg et Cie, Genève, pp 263–268Google Scholar
  32. Ledonne A, Mercuri NB (2017) Current concepts on the physiopathological relevance of dopaminergic receptors. Front Cell Neurosci 11:27Google Scholar
  33. Montagu KA (1957) Catechol compounds in rat tissues and in brains of different animals. Nature 180:244–245Google Scholar
  34. Mulinari S (2012) Monoamine theories of depression: historical impact on biomedical research. J Hist Neurosci 21:366–392Google Scholar
  35. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA (2015) The dopamine theory of addiction: 40 years of highs and lows. Nature Rev Neurosci 16:305–312Google Scholar
  36. Poirier LJ, Sourkes TL (1980) This week’s Citation Classic. Curr Contents 25:14Google Scholar
  37. Raab W (1948) Specific sympathomimetic substance in the brain. Am J Physiol 152:324–339Google Scholar
  38. Randrup A, Munkvad I (1974) Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10Google Scholar
  39. Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kenkyu no Shimpo (Adv Neurol Sci) 5:42–48Google Scholar
  40. Sano HS (2000) Biochemistry of the extrapyramidal system. Park Rel Disord 6:1–6Google Scholar
  41. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K (1959) Distribution of catechol compounds in human brain. Biochim Biophys Acta 32:586–587Google Scholar
  42. Sano I, Taniguchi K, Gamo T, Takesada M, Kakimoto Y (1960) Die Katechinamine im Zentralnervensystem. Klin Wschr 38:57–62Google Scholar
  43. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 509:509–522Google Scholar
  44. Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152Google Scholar
  45. Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219Google Scholar
  46. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380Google Scholar
  47. Sharma A, Couture J (2014) A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 48:209–225Google Scholar
  48. Snyder SH (1982) Schizophrenia. Lancet 2:970–973Google Scholar
  49. Tamminga CA, Cascella NG, Lahti RA, Lindberg M, Carlsson A (1992) Pharmacologic properties of (–)-3PPP (preclamol) in man. J Neural Transm 88:165–175Google Scholar
  50. Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9:329–336Google Scholar
  51. van Rossum JM (1967) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Neuro-psycho-pharmacology. Proceedings of the fifth international congress of the Collegium Internationale Neuro-psychopharmacologicum, 28th–31st March 1966. Excerpta Medica Foundation, Amsterdam, pp 321–329Google Scholar
  52. van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, Geyer MA (2015) The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 753:114–126Google Scholar
  53. Vane JR, Wolstenholme GEW, O’Connor M (eds) (1960) CIBA foundation symposium jointly with committee for symposia on drug action on adrenergic mechanisms (28th–31st March 1960). J. & A. Churchill, LondonGoogle Scholar
  54. Vogt M (1960) Central adrenergic mechanisms. Chairman’s opening remarks. In: Vane JR, Wolstenholme GEW, O’Connor M (eds) CIBA foundation symposium jointly with committee for symposia on drug action on adrenergic mechanisms (28th–31st March 1960). J. & A. Churchill, London, pp 382–385Google Scholar
  55. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Journal of AustraliaSydneyAustralia

Personalised recommendations