Journal of Neural Transmission

, Volume 126, Issue 2, pp 167–172 | Cite as

Complexity of electrocortical activity as potential biomarker in untreated Parkinson’s disease

  • Giovanni Mostile
  • Loretta Giuliano
  • Valeria Dibilio
  • Antonina Luca
  • Calogero Edoardo Cicero
  • Vito Sofia
  • Alessandra Nicoletti
  • Mario ZappiaEmail author
Neurology and Preclinical Neurological Studies - Original Article


In Parkinson’s disease (PD), the identification of instrumental biomarkers is crucial to evaluate disease susceptibility and motor stage. We evaluated self-similarity of electrocortical activity as expression of brain signal complexity in untreated PD, to investigate its possible role as a neurophysiological biomarker. We analyzed the data of 34 untreated PD subjects and 18 group-matched controls who underwent standardized electroencephalography. A Welch’s periodogram was applied to site-specific electroencephalographic signal epochs. To investigate self-similarity of electrocortical activity, the power law exponent β was computed for each selected coordinate. In both PD subjects and controls, β values at each coordinate increased with an antero-posterior gradient, changing from values around one in fronto-temporal sites to values around two among parieto-occipital sites. PD subjects presented overall lower β values among different sites compared to controls, with significant differences for the left fronto-temporal sites. Our findings suggest an increased level of fronto-temporal neuronal organization in untreated PD. We hypothesize a possible role of β as a neurophysiological biomarker for early untreated PD.


Untreated Parkinson’s disease Electrocortical complexity Power law exponent β Fronto-temporal electrocortical activity Biomarker 


Compliance with ethical standards

Ethical standards

The study protocol concerning data collection and analysis was approved by the local ethics committee. A written informed consent was obtained by study participants. The study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

The authors have nothing to report.


  1. Anokhin AP, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F (1996) Age increases brain complexity. Electroencephalogr Clin Neurophysiol 99:63–68CrossRefGoogle Scholar
  2. Bezard E, Gross CE, Brotchie JM (2003) Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 26:215–221CrossRefGoogle Scholar
  3. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  4. Buzsáki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15:264–278CrossRefGoogle Scholar
  5. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39CrossRefGoogle Scholar
  6. Goldberger AL, West BJ (1987) Fractals in physiology and medicine. Yale J Biol Med 60:421–435Google Scholar
  7. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002a) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472CrossRefGoogle Scholar
  8. Goldberger AL, Peng CK, Lipsitz LA (2002b) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23:23–26CrossRefGoogle Scholar
  9. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol (1985) 78:349–358CrossRefGoogle Scholar
  10. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol (1985) 80:1448–1457CrossRefGoogle Scholar
  11. Ibáñez A, Cardona JF, Dos Santos YV, Blenkmann A, Aravena P, Roca M, Hurtado E, Nerguizian M, Amoruso L, Gómez-Arévalo G, Chade A, Dubrovsky A, Gershanik O, Kochen S, Glenberg A, Manes F, Bekinschtein T (2013) Motor-language coupling: direct evidence from early Parkinson’s disease and intracranial cortical recordings. Cortex 49:968–984CrossRefGoogle Scholar
  12. Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I et al (1990) Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 40:1529–1534CrossRefGoogle Scholar
  13. Jenkinson N, Brown P (2011) New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 34:611–618CrossRefGoogle Scholar
  14. Kühn AA, Tsui A, Aziz T, Ray N, Brücke C, Kupsch A, Schneider GH, Brown P (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215:380–387CrossRefGoogle Scholar
  15. Li X, Polygiannakis J, Kapiris P, Peratzakis A, Eftaxias K, Yao X (2005) Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J Neural Eng 2:11–16CrossRefGoogle Scholar
  16. Little S, Pogosyan A, Kühn AA, Brown P (2012) β band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 236:383–388CrossRefGoogle Scholar
  17. Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P (2001) Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain 124:378–388CrossRefGoogle Scholar
  18. Melloni M, Sedeño L, Hesse E, García-Cordero I, Mikulan E, Plastino A, Marcotti A, López JD, Bustamante C, Lopera F, Pineda D, García AM, Manes F, Trujillo N, Ibáñez A (2015) Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease. Sci Rep 5:11899CrossRefGoogle Scholar
  19. Miller DB, O’Callaghan JP (2015) Biomarkers of Parkinson’s disease: present and future. Metabolism 64(3 Suppl 1):S40–S46CrossRefGoogle Scholar
  20. Mostile G, Nicoletti A, Dibilio V, Luca A, Pappalardo I, Giuliano L, Cicero CE, Sciacca G, Raciti L, Contrafatto D, Bruno E, Sofia V, Zappia M (2015) Electroencephalographic lateralization, clinical correlates and pharmacological response in untreated Parkinson’s disease. Parkinsonism Relat Disord 21:948–953CrossRefGoogle Scholar
  21. Pereda E, Gamundi A, Rial R, González J (1998) Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci Lett 250:91–94CrossRefGoogle Scholar
  22. Pritchard WS (1992) The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int J Neurosci 66:119–129CrossRefGoogle Scholar
  23. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123:394–403CrossRefGoogle Scholar
  24. Schirinzi T, Madeo G, Martella G, Maltese M, Picconi B, Calabresi P, Pisani A (2016) Early synaptic dysfunction in Parkinson’s disease: insights from animal models. Mov Disord 31:802–813CrossRefGoogle Scholar
  25. Silberstein P, Pogosyan A, Kühn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P (2005) Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128:1277–1291CrossRefGoogle Scholar
  26. Stadnitski T (2012) Measuring fractality. Front Physiol 3:127CrossRefGoogle Scholar
  27. Swann NC, de Hemptinne C, Aron AR, Ostrem JL, Knight RT, Starr PA (2015) Elevated synchrony in Parkinson disease detected with electroencephalography. Ann Neurol 78:742–750CrossRefGoogle Scholar
  28. Vaillancourt DE, Newell KM (2002) Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23:1–11CrossRefGoogle Scholar
  29. Williams D, Tijssen M, Van Bruggen G, Bosch A, Insola A, Di Lazzaro V, Mazzone P, Oliviero A, Quartarone A, Speelman H, Brown P (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569CrossRefGoogle Scholar
  30. Zappasodi F, Marzetti L, Olejarczyk E, Tecchio F, Pizzella V (2015) Age-related changes in electroencephalographic signal complexity. PLoS One 10:e0141995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Giovanni Mostile
    • 1
  • Loretta Giuliano
    • 1
  • Valeria Dibilio
    • 1
  • Antonina Luca
    • 1
  • Calogero Edoardo Cicero
    • 1
  • Vito Sofia
    • 1
  • Alessandra Nicoletti
    • 1
  • Mario Zappia
    • 1
    Email author
  1. 1.Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”Università degli Studi di CataniaCataniaItaly

Personalised recommendations