Advertisement

Dopamine and addiction: what have we learned from 40 years of research

  • Marcello Solinas
  • Pauline Belujon
  • Pierre Olivier Fernagut
  • Mohamed Jaber
  • Nathalie Thiriet
Psychiatry and Preclinical Psychiatric Studies - Review Article

Abstract

Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson’s disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.

Keywords

Substance abuse Reward Neuroplasticity Treatment Substantia nigra VTA Striatum 

References

  1. Ackerman JM, White FJ (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett 117(1–2):181–187PubMedCrossRefPubMedCentralGoogle Scholar
  2. Acquas E, Carboni E, Di Chiara G (1991) Profound depression of mesolimbic dopamine release after morphine withdrawal in dependent rats. Eur J Pharmacol 193(1):133–134PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adermark L, Morud J, Lotfi A, Ericson M, Soderpalm B (2018) Acute and chronic modulation of striatal endocannabinoid-mediated plasticity by nicotine. Addict Biol.  https://doi.org/10.1111/adb.12598 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alibhai IN, Green TA, Potashkin JA, Nestler EJ (2007) Regulation of fosB and DeltafosB mRNA expression: in vivo and in vitro studies. Brain Res 1143:22–33.  https://doi.org/10.1016/j.brainres.2007.01.069 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alvarez Y, Perez-Mana C, Torrens M, Farre M (2013) Antipsychotic drugs in cocaine dependence: a systematic review and meta-analysis. J Subst Abuse Treat 45(1):1–10.  https://doi.org/10.1016/j.jsat.2012.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andreoli M, Tessari M, Pilla M, Valerio E, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors prevents nicotine-triggered relapse to nicotine-seeking behavior. Neuropsychopharmacology 28(7):1272–1280.  https://doi.org/10.1038/sj.npp.1300183 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A (2008) Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci 28(37):9092–9100.  https://doi.org/10.1523/jneurosci.1001-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57(3):441–447PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arroyo M, Baker WA, Everitt BJ (2000) Cocaine self-administration in rats differentially alters mRNA levels of the monoamine transporters and striatal neuropeptides. Brain Res Mol Brain Res 83(1–2):107–120PubMedCrossRefGoogle Scholar
  11. Atwood BK, Kupferschmidt DA, Lovinger DM (2014) Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat Neurosci 17(4):540–548.  https://doi.org/10.1038/nn.3652 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bachtell RK, Whisler K, Karanian D, Self DW (2005) Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology 183(1):41–53.  https://doi.org/10.1007/s00213-005-0133-1 CrossRefPubMedGoogle Scholar
  13. Badiani A, Belin D, Epstein D, Calu D, Shaham Y (2011) Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 12(11):685–700.  https://doi.org/10.1038/nrn3104 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377(6548):424–428PubMedCrossRefGoogle Scholar
  15. Ball KT, Wellman CL, Fortenberry E, Rebec GV (2009) Sensitizing regimens of (±)3, 4-methylenedioxymethamphetamine (ecstasy) elicit enduring and differential structural alterations in the brain motive circuit of the rat. Neuroscience 160(2):264–274.  https://doi.org/10.1016/j.neuroscience.2009.02.025 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A (2004) The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 54(2):65–71.  https://doi.org/10.1002/syn.20066 CrossRefPubMedGoogle Scholar
  17. Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdere P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bezard E (2015) Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168.  https://doi.org/10.1016/j.pneurobio.2015.07.002 CrossRefPubMedGoogle Scholar
  18. Beaudoin GMJ 3rd, Gomez JA, Perkins J, Bland JL, Petko AK, Paladini CA (2018) Cocaine selectively reorganizes excitatory inputs to substantia nigra pars compacta dopamine neurons. J Neurosci 38(5):1151–1159.  https://doi.org/10.1523/jneurosci.1975-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217PubMedCrossRefPubMedCentralGoogle Scholar
  20. Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31(4):477–510 (discussion 517–476) PubMedCrossRefGoogle Scholar
  21. Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441.  https://doi.org/10.1016/j.neuron.2007.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 9(5):636–641.  https://doi.org/10.1038/nn1682 CrossRefPubMedGoogle Scholar
  23. Belujon P, Grace AA (2014) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76(12):927–936.  https://doi.org/10.1016/j.biopsych.2014.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Belujon P, Jakobowski NL, Dollish HK, Grace AA (2016) Withdrawal from acute amphetamine induces an amygdala-driven attenuation of dopamine neuron activity: reversal by ketamine. Neuropsychopharmacology 41(2):619–627.  https://doi.org/10.1038/npp.2015.191 CrossRefPubMedGoogle Scholar
  25. Benoit-Marand M, Jaber M, Gonon F (2000) Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur J Neurosci 12(8):2985–2992PubMedCrossRefGoogle Scholar
  26. Benoit-Marand M, Borrelli E, Gonon F (2001) Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 21(23):9134–9141PubMedCrossRefGoogle Scholar
  27. Benoit-Marand M, Ballion B, Borrelli E, Boraud T, Gonon F (2011) Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J Neurochem 116(3):449–458.  https://doi.org/10.1111/j.1471-4159.2010.07125.x CrossRefPubMedGoogle Scholar
  28. Ben-Shahar O, Moscarello JM, Ettenberg A (2006) One hour, but not six hours, of daily access to self-administered cocaine results in elevated levels of the dopamine transporter. Brain Res 1095(1):148–153.  https://doi.org/10.1016/j.brainres.2006.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ben-Shahar O, Keeley P, Cook M, Brake W, Joyce M, Nyffeler M, Heston R, Ettenberg A (2007) Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. Brain Res 1131(1):220–228.  https://doi.org/10.1016/j.brainres.2006.10.069 CrossRefPubMedGoogle Scholar
  30. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369PubMedCrossRefGoogle Scholar
  31. Berry KP, Nedivi E (2017) Spine dynamics: are they all the same? Neuron 96(1):43–55.  https://doi.org/10.1016/j.neuron.2017.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28(22):5671–5685.  https://doi.org/10.1523/jneurosci.1039-08.2008 CrossRefPubMedGoogle Scholar
  33. Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2009) Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 34(5):1162–1171.  https://doi.org/10.1038/npp.2008.135 CrossRefPubMedGoogle Scholar
  34. Bezard E, Dovero S, Belin D, Duconger S, Jackson-Lewis V, Przedborski S, Piazza PV, Gross CE, Jaber M (2003) Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 23(35):10999–11007PubMedCrossRefPubMedCentralGoogle Scholar
  35. Blanco-Gandia MC, Rodriguez-Arias M (2018) Pharmacological treatments for opiate and alcohol addiction: a historical perspective of the last 50 years. Eur J Pharmacol 836:89–101.  https://doi.org/10.1016/j.ejphar.2018.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Blomeley CP, Cains S, Smith R, Bracci E (2011) Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone. Neuropsychopharmacology 36(5):1033–1046.  https://doi.org/10.1038/npp.2010.241 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Boileau I, Assaad JM, Pihl RO, Benkelfat C, Leyton M, Diksic M, Tremblay RE, Dagher A (2003) Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49(4):226–231.  https://doi.org/10.1002/syn.10226 CrossRefPubMedGoogle Scholar
  38. Bonci A, Malenka RC (1999) Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J Neurosci 19(10):3723–3730PubMedCrossRefGoogle Scholar
  39. Bontempi B, Sharp FR (1997) Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 17(21):8596–8612PubMedCrossRefGoogle Scholar
  40. Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24(34):7482–7490.  https://doi.org/10.1523/jneurosci.1312-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Bortz DM, Grace AA (2018) Medial septum differentially regulates dopamine neuron activity in the rat ventral tegmental area and substantia nigra via distinct pathways. Neuropsychopharmacology 43(10):2093–2100.  https://doi.org/10.1038/s41386-018-0048-2 CrossRefPubMedGoogle Scholar
  42. Bosse R, Fumagalli F, Jaber M, Giros B, Gainetdinov RR, Wetsel WC, Missale C, Caron MG (1997) Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 19(1):127–138PubMedCrossRefGoogle Scholar
  43. Bossong MG, van Berckel BN, Boellaard R, Zuurman L, Schuit RC, Windhorst AD, van Gerven JM, Ramsey NF, Lammertsma AA, Kahn RS (2009) Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34(3):759–766.  https://doi.org/10.1038/npp.2008.138 CrossRefPubMedGoogle Scholar
  44. Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25(40):9144–9151.  https://doi.org/10.1523/jneurosci.2252-05.2005 CrossRefPubMedGoogle Scholar
  45. Bourdy R, Barrot M (2012) A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 35(11):681–690.  https://doi.org/10.1016/j.tins.2012.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Bourdy R, Sanchez-Catalan MJ, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier MJ, Veinante P, Sesack SR, Georges F, Barrot M (2014) Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology 39(12):2788–2798.  https://doi.org/10.1038/npp.2014.129 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564:203–219PubMedCrossRefPubMedCentralGoogle Scholar
  48. Boyce-Rustay JM, Risinger FO (2003) Dopamine D3 receptor knockout mice and the motivational effects of ethanol. Pharmacol Biochem Behav 75(2):373–379PubMedCrossRefPubMedCentralGoogle Scholar
  49. Brady AM, Glick SD, O’Donnell P (2005) Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine. J Neurosci 25(28):6687–6695.  https://doi.org/10.1523/jneurosci.0643-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Briand LA, Blendy JA (2010) Molecular and genetic substrates linking stress and addiction. Brain Res 1314:219–234.  https://doi.org/10.1016/j.brainres.2009.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76(4):790–803.  https://doi.org/10.1016/j.neuron.2012.09.040 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Brodie MS (2002) Increased ethanol excitation of dopaminergic neurons of the ventral tegmental area after chronic ethanol treatment. Alcohol Clin Exp Res 26(7):1024–1030.  https://doi.org/10.1097/01.alc.0000021336.33310.6b CrossRefPubMedGoogle Scholar
  53. Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23(11):1848–1852PubMedCrossRefGoogle Scholar
  54. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA (2004) Smoking-induced ventral striatum dopamine release. Am J Psychiatry 161(7):1211–1218.  https://doi.org/10.1176/appi.ajp.161.7.1211 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Brown RW, Kolb B (2001) Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Res 899(1–2):94–100PubMedCrossRefPubMedCentralGoogle Scholar
  56. Brown MT, Bellone C, Mameli M, Labouebe G, Bocklisch C, Balland B, Dahan L, Lujan R, Deisseroth K, Luscher C (2010) Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 5(12):e15870.  https://doi.org/10.1371/journal.pone.0015870 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Brown TE, Lee BR, Mu P, Ferguson D, Dietz D, Ohnishi YN, Lin Y, Suska A, Ishikawa M, Huang YH, Shen H, Kalivas PW, Sorg BA, Zukin RS, Nestler EJ, Dong Y, Schluter OM (2011) A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci 31(22):8163–8174.  https://doi.org/10.1523/jneurosci.0016-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Brown PL, Palacorolla H, Brady D, Riegger K, Elmer GI, Shepard PD (2017) Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. J Neurosci 37(1):217–225.  https://doi.org/10.1523/jneurosci.1353-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Budygin EA, Brodie MS, Sotnikova TD, Mateo Y, John CE, Cyr M, Gainetdinov RR, Jones SR (2004) Dissociation of rewarding and dopamine transporter-mediated properties of amphetamine. Proc Natl Acad Sci USA 101(20):7781–7786.  https://doi.org/10.1073/pnas.0401418101 CrossRefPubMedGoogle Scholar
  60. Bunney BS, Aghajanian GK, Roth RH (1973) Comparison of effects of l-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat New Biol 245(143):123–125PubMedCrossRefGoogle Scholar
  61. Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31(7):1362–1370.  https://doi.org/10.1038/sj.npp.1300966 CrossRefPubMedGoogle Scholar
  62. Cagniard B, Sotnikova TD, Gainetdinov RR, Zhuang X (2014) The dopamine transporter expression level differentially affects responses to cocaine and amphetamine. J Neurogenet 28(1–2):112–121.  https://doi.org/10.3109/01677063.2014.908191 CrossRefPubMedGoogle Scholar
  63. Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22(7):2977–2988PubMedCrossRefPubMedCentralGoogle Scholar
  64. Caine SB, Thomsen M, Gabriel KI, Berkowitz JS, Gold LH, Koob GF, Tonegawa S, Zhang J, Xu M (2007) Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 27(48):13140–13150.  https://doi.org/10.1523/jneurosci.2284-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Calipari ES, Beveridge TJ, Jones SR, Porrino LJ (2013) Withdrawal from extended-access cocaine self-administration results in dysregulated functional activity and altered locomotor activity in rats. Eur J Neurosci 38(12):3749–3757.  https://doi.org/10.1111/ejn.12381 CrossRefPubMedGoogle Scholar
  66. Campbell JC, Jeyamohan SB, De La Cruz P, Chen N, Shin D, Pilitsis JG (2014) Place conditioning to apomorphine in rat models of Parkinson’s disease: differences by dose and side-effect expression. Behav Brain Res 275:114–119.  https://doi.org/10.1016/j.bbr.2014.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Caprioli D, Fryer TD, Sawiak SJ, Aigbirhio FI, Dalley JW (2013) Translating positron emission tomography studies in animals to stimulant addiction: promises and pitfalls. Curr Opin Neurobiol 23(4):597–606.  https://doi.org/10.1016/j.conb.2013.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21(9):RC141 (141–144) PubMedCrossRefPubMedCentralGoogle Scholar
  69. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445.  https://doi.org/10.1016/j.tins.2005.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144CrossRefGoogle Scholar
  71. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180(4596):1200PubMedCrossRefPubMedCentralGoogle Scholar
  72. Castrioto A, Kistner A, Klinger H, Lhommee E, Schmitt E, Fraix V, Chabardes S, Mertens P, Quesada JL, Broussolle E, Pollak P, Thobois SC, Krack P (2013) Psychostimulant effect of levodopa: reversing sensitisation is possible. J Neurol Neurosurg Psychiatry 84(1):18–22.  https://doi.org/10.1136/jnnp-2012-302444 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Celada P, Paladini CA, Tepper JM (1999) GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata. Neuroscience 89(3):813–825PubMedCrossRefPubMedCentralGoogle Scholar
  74. Cerruti C, Pilotte NS, Uhl G, Kuhar MJ (1994) Reduction in dopamine transporter mRNA after cessation of repeated cocaine administration. Brain Res Mol Brain Res 22(1–4):132–138PubMedCrossRefPubMedCentralGoogle Scholar
  75. Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76(3):223–230.  https://doi.org/10.1016/j.biopsych.2013.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Chang HT, Kitai ST (1985) Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Res 347(1):112–116PubMedCrossRefPubMedCentralGoogle Scholar
  77. Chang L, Alicata D, Ernst T, Volkow N (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(Suppl 1):16–32.  https://doi.org/10.1111/j.1360-0443.2006.01782.x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Chen NH, Reith ME (1994) Autoregulation and monoamine interactions in the ventral tegmental area in the absence and presence of cocaine: a microdialysis study in freely moving rats. J Pharmacol Exp Ther 271(3):1597–1610PubMedPubMedCentralGoogle Scholar
  79. Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ (1997) Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. J Neurosci 17(13):4933–4941PubMedCrossRefPubMedCentralGoogle Scholar
  80. Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, Quan N, Stephens RL, Hill ER, Nottoli T, Han DD, Gu HH (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci USA 103(24):9333–9338.  https://doi.org/10.1073/pnas.0600905103 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM, Chou JK, Bonci A (2008) Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59(2):288–297PubMedPubMedCentralCrossRefGoogle Scholar
  82. Chergui K, Akaoka H, Charlety PJ, Saunier CF, Buda M, Chouvet G (1994) Subthalamic nucleus modulates burst firing of nigral dopamine neurones via NMDA receptors. NeuroReport 5(10):1185–1188PubMedCrossRefPubMedCentralGoogle Scholar
  83. Chinaglia G, Alvarez FJ, Probst A, Palacios JM (1992) Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: a quantitative autoradiographic study using [3H]mazindol. Neuroscience 49(2):317–327PubMedCrossRefPubMedCentralGoogle Scholar
  84. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6(3):613–619PubMedCrossRefPubMedCentralGoogle Scholar
  85. Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, Niznik HB, Levey AI (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15(3 Pt 1):1714–1723PubMedCrossRefPubMedCentralGoogle Scholar
  86. Coffey KR, Barker DJ, Gayliard N, Kulik JM, Pawlak AP, Stamos JP, West MO (2015) Electrophysiological evidence of alterations to the nucleus accumbens and dorsolateral striatum during chronic cocaine self-administration. Eur J Neurosci 41(12):1538–1552.  https://doi.org/10.1111/ejn.12904 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Colby CR, Whisler K, Steffen C, Nestler EJ, Self DW (2003) Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine. J Neurosci 23(6):2488–2493PubMedCrossRefPubMedCentralGoogle Scholar
  88. Conrad LC, Pfaff DW (1976) Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res 113(3):589–596PubMedCrossRefPubMedCentralGoogle Scholar
  89. Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11(12):1136–1143PubMedCrossRefPubMedCentralGoogle Scholar
  90. Cowen MS, Lawrence AJ (2001) Alterations in central preproenkephalin mRNA expression after chronic free-choice ethanol consumption by fawn-hooded rats. Alcohol Clin Exp Res 25(8):1126–1133PubMedCrossRefPubMedCentralGoogle Scholar
  91. Cox SML, Yau Y, Larcher K, Durand F, Kolivakis T, Delaney JS, Dagher A, Benkelfat C, Leyton M (2017) Cocaine cue-induced dopamine release in recreational cocaine users. Sci Rep 7:46665.  https://doi.org/10.1038/srep46665 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Crippens D, Robinson TE (1994) Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res 650(1):56–62PubMedCrossRefPubMedCentralGoogle Scholar
  93. Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci 363(1507):3233–3243.  https://doi.org/10.1098/rstb.2008.0090 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Cuzon Carlson VC, Seabold GK, Helms CM, Garg N, Odagiri M, Rau AR, Daunais J, Alvarez VA, Lovinger DM, Grant KA (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36(12):2513–2528.  https://doi.org/10.1038/npp.2011.140 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Cunningham CL, Howard MA, Gill SJ, Rubinstein M, Low MJ, Grandy DK (2000) Ethanol-conditioned place preference is reduced in dopamine D2 receptor-deficient mice. Pharmacol Biochem Behav 67(4):693–699PubMedCrossRefGoogle Scholar
  96. Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9(3):469–477PubMedCrossRefPubMedCentralGoogle Scholar
  97. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816):1267–1270.  https://doi.org/10.1126/science.1137073 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC (1992) Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci 106(1):181–191PubMedCrossRefPubMedCentralGoogle Scholar
  99. De Bellis MD (2002) Developmental traumatology: a contributory mechanism for alcohol and substance use disorders. Psychoneuroendocrinology 27(1–2):155–170PubMedCrossRefPubMedCentralGoogle Scholar
  100. de la Fuente-Fernandez R, Pal PK, Vingerhoets FJ, Kishore A, Schulzer M, Mak EK, Ruth TJ, Snow BJ, Calne DB, Stoessl AJ (2000) Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations. J Neural Transm 107(1):49–57PubMedCrossRefPubMedCentralGoogle Scholar
  101. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127(Pt 12):2747–2754PubMedCrossRefPubMedCentralGoogle Scholar
  102. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347:72–76PubMedCrossRefGoogle Scholar
  103. Deister CA, Teagarden MA, Wilson CJ, Paladini CA (2009) An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci 29(50):15888–15897.  https://doi.org/10.1523/jneurosci.4053-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Dematteis M, Auriacombe M, D’Agnone O, Somaini L, Szerman N, Littlewood R, Alam F, Alho H, Benyamina A, Bobes J, Daulouede JP, Leonardi C, Maremmani I, Torrens M, Walcher S, Soyka M (2017) Recommendations for buprenorphine and methadone therapy in opioid use disorder: a European consensus. Expert Opin Pharmacother 18(18):1987–1999.  https://doi.org/10.1080/14656566.2017.1409722 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Deroche-Gamonet V, Piazza PV (2014) Psychobiology of cocaine addiction: Contribution of a multi-symptomatic animal model of loss of control. Neuropharmacology 76Pt B:437–449.  https://doi.org/10.1016/j.neuropharm.2013.07.014 CrossRefGoogle Scholar
  106. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017PubMedPubMedCentralCrossRefGoogle Scholar
  107. Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7(1):69–76.  https://doi.org/10.1016/j.coph.2006.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85(14):5274–5278PubMedCrossRefPubMedCentralGoogle Scholar
  109. Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877:461–485PubMedCrossRefPubMedCentralGoogle Scholar
  110. Diana M (1998) Drugs of abuse and dopamine cell activity. Adv Pharmacol 42:998–1001PubMedCrossRefPubMedCentralGoogle Scholar
  111. Diana M, Gessa GL, Rossetti ZL (1992a) Lack of tolerance to ethanol-induced stimulation of mesolimbic dopamine system. Alcohol Alcohol 27(4):329–333PubMedPubMedCentralGoogle Scholar
  112. Diana M, Pistis M, Muntoni A, Rossetti ZL, Gessa G (1992b) Marked decrease of A10 dopamine neuronal firing during ethanol withdrawal syndrome in rats. Eur J Pharmacol 221(2–3):403–404PubMedCrossRefPubMedCentralGoogle Scholar
  113. Diana M, Pistis M, Muntoni A, Gessa G (1995) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 272(2):781–785PubMedPubMedCentralGoogle Scholar
  114. Diana M, Melis M, Muntoni AL, Gessa GL (1998) Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci USA 95(17):10269–10273PubMedCrossRefGoogle Scholar
  115. Dong Y, Taylor JR, Wolf ME, Shaham Y (2017) Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci 37(45):10867–10876.  https://doi.org/10.1523/jneurosci.1821-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Dos Santos M, Salery M, Forget B, Garcia Perez MA, Betuing S, Boudier T, Vanhoutte P, Caboche J, Heck N (2017) Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity. Biol Psychiatry 82(11):806–818.  https://doi.org/10.1016/j.biopsych.2017.03.014 CrossRefPubMedGoogle Scholar
  117. Dos Santos M, Cahill EN, Bo GD, Vanhoutte P, Caboche J, Giros B, Heck N (2018) Cocaine increases dopaminergic connectivity in the nucleus accumbens. Brain Struct Funct 223(2):913–923.  https://doi.org/10.1007/s00429-017-1532-x CrossRefPubMedGoogle Scholar
  118. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49(2):81–96PubMedCrossRefGoogle Scholar
  119. DSM-5 (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric AssociationGoogle Scholar
  120. Dumartin B, Jaber M, Gonon F, Caron MG, Giros B, Bloch B (2000) Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci USA 97(4):1879–1884PubMedCrossRefPubMedCentralGoogle Scholar
  121. Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8(1):100–112PubMedCrossRefGoogle Scholar
  122. El Rawas R, Thiriet N, Lardeux V, Jaber M, Solinas M (2009) Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology 203(3):561–570.  https://doi.org/10.1007/s00213-008-1402-6 CrossRefPubMedGoogle Scholar
  123. El-Ghundi M, George SR, Drago J, Fletcher PJ, Fan T, Nguyen T, Liu C, Sibley DR, Westphal H, O’Dowd BF (1998) Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol 353(2–3):149–158PubMedCrossRefGoogle Scholar
  124. Elliot EE, Sibley DR, Katz JL (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 169(2):161–168.  https://doi.org/10.1007/s00213-003-1494-y CrossRefPubMedGoogle Scholar
  125. Elmer GI, Pieper JO, Rubinstein M, Low MJ, Grandy DK, Wise RA (2002) Failure of intravenous morphine to serve as an effective instrumental reinforcer in dopamine D2 receptor knock-out mice. J Neurosci 22(10):RC224PubMedCrossRefPubMedCentralGoogle Scholar
  126. Engeln M, Fasano S, Ahmed SH, Cador M, Baekelandt V, Bezard E, Fernagut PO (2013) Levodopa gains psychostimulant-like properties after nigral dopaminergic loss. Ann Neurol 74(1):140–144.  https://doi.org/10.1002/ana.23881 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393(6680):76–79.  https://doi.org/10.1038/30001 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Eravci M, Grosspietsch T, Pinna G, Schulz O, Kley S, Bachmann M, Wolffgramm J, Gotz E, Heyne A, Meinhold H, Baumgartner A (1997) Dopamine receptor gene expression in an animal model of ‘behavioral dependence’ on ethanol. Brain Res Mol Brain Res 50(1–2):221–229PubMedCrossRefPubMedCentralGoogle Scholar
  129. Etter JF, Stapleton JA (2006) Nicotine replacement therapy for long-term smoking cessation: a meta-analysis. Tob Control 15(4):280–285.  https://doi.org/10.1136/tc.2005.015487 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, Doder M, Brooks DJ, Lees AJ, Piccini P (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59(5):852–858PubMedCrossRefPubMedCentralGoogle Scholar
  131. Everitt BJ (1990) Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev 14(2):217–232PubMedCrossRefPubMedCentralGoogle Scholar
  132. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489PubMedCrossRefPubMedCentralGoogle Scholar
  133. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363(1507):3125–3135PubMedPubMedCentralCrossRefGoogle Scholar
  134. Fadda P, Scherma M, Fresu A, Collu M, Fratta W (2005) Dopamine and serotonin release in dorsal striatum and nucleus accumbens is differentially modulated by morphine in DBA/2 J and C57BL/6 J mice. Synapse 56(1):29–38.  https://doi.org/10.1002/syn.20122 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Faleiro LJ, Jones S, Kauer JA (2004) Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29(12):2115–2125.  https://doi.org/10.1038/sj.npp.1300495 CrossRefPubMedGoogle Scholar
  136. Farnebo LO, Hamberger B (1971) Drug-induced changes in the release of 3 H-monoamines from field stimulated rat brain slices. Acta Physiol Scand Suppl 371:35–44PubMedCrossRefPubMedCentralGoogle Scholar
  137. Fasano C, Bourque MJ, Lapointe G, Leo D, Thibault D, Haber M, Kortleven C, Desgroseillers L, Murai KK, Trudeau LE (2013) Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors. Neuropharmacology 67:432–443.  https://doi.org/10.1016/j.neuropharm.2012.11.030 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Fauchey V, Jaber M, Bloch B, Le Moine C (2000a) Dopamine control of striatal gene expression during development: relevance to knockout mice for the dopamine transporter. Eur J Neurosci 12(9):3415–3425PubMedCrossRefPubMedCentralGoogle Scholar
  139. Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C (2000b) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 12(1):19–26PubMedCrossRefPubMedCentralGoogle Scholar
  140. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154(2):261–274.  https://doi.org/10.1038/bjp.2008.51 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Fernagut PO, Diguet E, Jaber M, Bioulac B, Tison F (2002) Dopamine transporter knock-out mice are hypersensitive to 3-nitropropionic acid-induced striatal damage. Eur J Neurosci 15(12):2053–2056PubMedCrossRefPubMedCentralGoogle Scholar
  142. Fernagut PO, Chalon S, Diguet E, Guilloteau D, Tison F, Jaber M (2003) Motor behaviour deficits and their histopathological and functional correlates in the nigrostriatal system of dopamine transporter knockout mice. Neuroscience 116(4):1123–1130PubMedCrossRefPubMedCentralGoogle Scholar
  143. Fibiger HC, Nomikos GG, Pfaus JG, Damsma G (1992) Sexual behavior, eating and mesolimbic dopamine. Clin Neuropharmacol 15(Suppl 1 Pt A):566A–567APubMedCrossRefPubMedCentralGoogle Scholar
  144. Fisher H, Aron A, Brown LL (2005) Romantic love: an fMRI study of a neural mechanism for mate choice. J Comp Neurol 493(1):58–62.  https://doi.org/10.1002/cne.20772 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Floresco SB, Blaha CD, Yang CR, Phillips AG (2001a) Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 21(16):6370–6376PubMedCrossRefGoogle Scholar
  146. Floresco SB, Blaha CD, Yang CR, Phillips AG (2001b) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 21(8):2851–2860PubMedCrossRefGoogle Scholar
  147. Floresco SB, Todd CL, Grace AA (2001c) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21(13):4915–4922PubMedCrossRefPubMedCentralGoogle Scholar
  148. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6(9):968–973PubMedCrossRefPubMedCentralGoogle Scholar
  149. Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29(3):530–536.  https://doi.org/10.1038/sj.npp.1300326 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ (2004) A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 24(31):6939–6945.  https://doi.org/10.1523/jneurosci.0671-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Fouriezos G, Hansson P, Wise RA (1978) Neuroleptic-induced attenuation of brain stimulation reward in rats. J Comp Physiol Psychol 92(4):661–671PubMedCrossRefPubMedCentralGoogle Scholar
  152. Fremeau RT Jr, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci USA 88(9):3772–3776PubMedCrossRefGoogle Scholar
  153. French ED (1997) delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett 226(3):159–162PubMedCrossRefPubMedCentralGoogle Scholar
  154. Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21(4):331–342PubMedCrossRefPubMedCentralGoogle Scholar
  155. Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):301–313.  https://doi.org/10.1007/s00210-007-0216-0 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283(5400):397–401PubMedCrossRefPubMedCentralGoogle Scholar
  157. Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B (2015) Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry 6:41.  https://doi.org/10.3389/fpsyt.2015.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Gao WY, Lee TH, King GR, Ellinwood EH (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychopharmacology 18(3):222–232.  https://doi.org/10.1016/s0893-133x(97)00132-2 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Garcia MM, Brown HE, Harlan RE (1995) Alterations in immediate-early gene proteins in the rat forebrain induced by acute morphine injection. Brain Res 692(1–2):23–40PubMedCrossRefPubMedCentralGoogle Scholar
  160. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14(10):6084–6093PubMedCrossRefPubMedCentralGoogle Scholar
  161. Georges F, Aston-Jones G (2001) Potent regulation of midbrain dopamine neurons by the bed nucleus of the stria terminalis. J Neurosci 21(16):RC160PubMedCrossRefPubMedCentralGoogle Scholar
  162. Georges F, Stinus L, Bloch B, Le Moine C (1999) Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur J Neurosci 11(2):481–490PubMedCrossRefPubMedCentralGoogle Scholar
  163. Georgiadis JR, Kringelbach ML, Pfaus JG (2012) Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol 9(9):486–498.  https://doi.org/10.1038/nrurol.2012.151 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466.  https://doi.org/10.1146/annurev-neuro-061010-113641 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348(1):201–203PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ghisi V, Ramsey AJ, Masri B, Gainetdinov RR, Caron MG, Salahpour A (2009) Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell Signal 21(1):87–94.  https://doi.org/10.1016/j.cellsig.2008.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Giovannoni G, O’Sullivan JD, Turner K, Manson AJ, Lees AJ (2000) Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 68(4):423–428PubMedPubMedCentralCrossRefGoogle Scholar
  168. Gipson CD, Olive MF (2017) Structural and functional plasticity of dendritic spines—root or result of behavior? Genes Brain Behav 16(1):101–117.  https://doi.org/10.1111/gbb.12324 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Gipson CD, Kupchik YM, Kalivas PW (2014) Rapid, transient synaptic plasticity in addiction. Neuropharmacology 76(Pt B):276–286.  https://doi.org/10.1016/j.neuropharm.2013.04.032 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Girault JA, Valjent E, Caboche J, Herve D (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 7(1):77–85.  https://doi.org/10.1016/j.coph.2006.08.012 CrossRefPubMedGoogle Scholar
  171. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612.  https://doi.org/10.1038/379606a0 CrossRefPubMedGoogle Scholar
  172. Goeders NE (2002) Stress and cocaine addiction. J Pharmacol Exp Ther 301(3):785–789PubMedCrossRefGoogle Scholar
  173. Goto Y, Grace AA (2005) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47(2):255–266PubMedCrossRefGoogle Scholar
  174. Gould RW, Duke AN, Nader MA (2014) PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 84:138–151.  https://doi.org/10.1016/j.neuropharm.2013.02.004 CrossRefPubMedGoogle Scholar
  175. Gozzi A, Tessari M, Dacome L, Agosta F, Lepore S, Lanzoni A, Cristofori P, Pich EM, Corsi M, Bifone A (2011) Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology 36(12):2431–2440.  https://doi.org/10.1038/npp.2011.129 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95(Suppl 2):S119–S128PubMedCrossRefPubMedCentralGoogle Scholar
  177. Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59(3–4):211–218PubMedCrossRefPubMedCentralGoogle Scholar
  178. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4(11):2877–2890PubMedCrossRefGoogle Scholar
  179. Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30(5):220–227.  https://doi.org/10.1016/j.tins.2007.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70(1–2):119–136.  https://doi.org/10.1006/nlme.1998.3843 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87(17):6912–6916PubMedCrossRefPubMedCentralGoogle Scholar
  182. Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128(3):351–358.  https://doi.org/10.1111/j.1748-1716.1986.tb07988.x CrossRefPubMedPubMedCentralGoogle Scholar
  183. Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412(6843):141–142PubMedPubMedCentralCrossRefGoogle Scholar
  184. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63PubMedCrossRefPubMedCentralGoogle Scholar
  185. Groves PM, Wilson CJ, Young SJ, Rebec GV (1975) Self-inhibition by dopaminergic neurons. Science 190(4214):522–528PubMedCrossRefPubMedCentralGoogle Scholar
  186. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13(12):1519–1525.  https://doi.org/10.1038/nn.2685 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Grunhage F, Schulze TG, Muller DJ, Lanczik M, Franzek E, Albus M, Borrmann-Hassenbach M, Knapp M, Cichon S, Maier W, Rietschel M, Propping P, Nothen MM (2000) Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Mol Psychiatry 5(3):275–282PubMedCrossRefPubMedCentralGoogle Scholar
  188. Guan YZ, Ye JH (2010) Ethanol blocks long-term potentiation of GABAergic synapses in the ventral tegmental area involvingmu-opioid receptors. Neuropsychopharmacol 35(9):1841–1849.  https://doi.org/10.1038/npp.2010.51 CrossRefGoogle Scholar
  189. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35(1):4–26.  https://doi.org/10.1038/npp.2009.129 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293(2):282–298PubMedCrossRefPubMedCentralGoogle Scholar
  191. Hamdi A, Prasad C (1993) Bidirectional changes in striatal D1-dopamine receptor density during chronic ethanol intake. Life Sci 52(3):251–257PubMedCrossRefPubMedCentralGoogle Scholar
  192. Hammond C, Deniau JM, Rizk A, Feger J (1978) Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 151(2):235–244PubMedCrossRefPubMedCentralGoogle Scholar
  193. Haney M, Ward AS, Foltin RW, Fischman MW (2001) Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology 155(4):330–337PubMedCrossRefPubMedCentralGoogle Scholar
  194. Hanlon CA, Wesley MJ, Porrino LJ (2009) Loss of functional specificity in the dorsal striatum of chronic cocaine users. Drug Alcohol Depend 102(1–3):88–94.  https://doi.org/10.1016/j.drugalcdep.2009.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Haustein KO (2000) Pharmacotherapy of nicotine dependence. Int J Clin Pharmacol Ther 38(6):273–290PubMedCrossRefPubMedCentralGoogle Scholar
  196. Heck N, Dos Santos M, Amairi B, Salery M, Besnard A, Herzog E, Boudier T, Vanhoutte P, Caboche J (2015) A new automated 3D detection of synaptic contacts reveals the formation of cortico-striatal synapses upon cocaine treatment in vivo. Brain Struct Funct 220(5):2953–2966.  https://doi.org/10.1007/s00429-014-0837-2 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304(4):569–595.  https://doi.org/10.1002/cne.903040406 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251(3):833–839PubMedPubMedCentralGoogle Scholar
  199. Herin DV, Rush CR, Grabowski J (2010) Agonist-like pharmacotherapy for stimulant dependence: preclinical, human laboratory, and clinical studies. Ann N Y Acad Sci 1187:76–100.  https://doi.org/10.1111/j.1749-6632.2009.05145.x CrossRefPubMedPubMedCentralGoogle Scholar
  200. Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388(2):211–227PubMedCrossRefPubMedCentralGoogle Scholar
  201. Higley AE, Kiefer SW, Li X, Gaal J, Xi ZX, Gardner EL (2011) Dopamine D(3) receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats. Eur J Pharmacol 659(2–3):187–192.  https://doi.org/10.1016/j.ejphar.2011.02.046 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH (1998) Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res 779(1–2):214–225PubMedCrossRefPubMedCentralGoogle Scholar
  203. Hjelmstad GO, Xia Y, Margolis EB, Fields HL (2013) Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons. J Neurosci 33(15):6454–6459.  https://doi.org/10.1523/jneurosci.0178-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Hoffman AF, Lupica CR (2001) Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J Neurophysiol 85(1):72–83.  https://doi.org/10.1152/jn.2001.85.1.72 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Hoffman DC, Dickson PR, Beninger RJ (1988) The dopamine D2 receptor agonists, quinpirole and bromocriptine produce conditioned place preferences. Prog Neuropsychopharmacol Biol Psychiatry 12(2–3):315–322PubMedCrossRefPubMedCentralGoogle Scholar
  206. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O (2011) Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 31(32):11457–11471.  https://doi.org/10.1523/jneurosci.1384-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA 89(13):5764–5768PubMedCrossRefPubMedCentralGoogle Scholar
  208. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13(5):1235–1244PubMedCrossRefPubMedCentralGoogle Scholar
  209. Hummel M, Unterwald EM (2002) D1 dopamine receptor: a putative neurochemical and behavioral link to cocaine action. J Cell Physiol 191(1):17–27.  https://doi.org/10.1002/jcp.10078 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2):475–492PubMedCrossRefPubMedCentralGoogle Scholar
  211. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162(8):1414–1422PubMedCrossRefPubMedCentralGoogle Scholar
  212. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598.  https://doi.org/10.1146/annurev.neuro.29.051605.113009 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239(1):219–228PubMedPubMedCentralGoogle Scholar
  214. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20(19):7489–7495PubMedCrossRefPubMedCentralGoogle Scholar
  215. Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22(14):6247–6253PubMedCrossRefPubMedCentralGoogle Scholar
  216. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7(4):389–397.  https://doi.org/10.1038/nn1217 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Jaber M (2006) Monoamine transporters. In: Gorwood P, Hamon M (eds) Psychopharmacogenetics. Klüwer Publ, pp 333–356Google Scholar
  218. Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35(11):1503–1519PubMedCrossRefPubMedCentralGoogle Scholar
  219. Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Mov Disord 12(5):629–633.  https://doi.org/10.1002/mds.870120502 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11(10):3499–3511PubMedCrossRefPubMedCentralGoogle Scholar
  221. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci USA 108(39):16446–16450.  https://doi.org/10.1073/pnas.1105418108 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Janknecht R (1995) Regulation of the c-fos promoter. Immunobiology 193(2–4):137–142.  https://doi.org/10.1016/s0171-2985(11)80536-x CrossRefPubMedPubMedCentralGoogle Scholar
  223. Jedynak JP, Uslaner JM, Esteban JA, Robinson TE (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci 25(3):847–853.  https://doi.org/10.1111/j.1460-9568.2007.05316.x CrossRefPubMedPubMedCentralGoogle Scholar
  224. Jessor R, Jessor S (1980) A social-psychological framework for studying drug use. NIDA Res Monogr 30:102–109PubMedPubMedCentralGoogle Scholar
  225. Ji H, Shepard PD (2007) Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci 27(26):6923–6930.  https://doi.org/10.1523/jneurosci.0958-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  226. Jiang ZG, North RA (1992) Pre- and postsynaptic inhibition by opioids in rat striatum. J Neurosci 12(1):356–361PubMedCrossRefPubMedCentralGoogle Scholar
  227. Jiao X, Pare WP, Tejani-Butt SM (2006) Alcohol consumption alters dopamine transporter sites in Wistar-Kyoto rat brain. Brain Res 1073–1074:175–182.  https://doi.org/10.1016/j.brainres.2005.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488PubMedCrossRefPubMedCentralGoogle Scholar
  229. Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A (2015) The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 6:231.  https://doi.org/10.3389/fphar.2015.00231 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5(1):20–25PubMedCrossRefPubMedCentralGoogle Scholar
  231. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95(7):4029–4034PubMedCrossRefPubMedCentralGoogle Scholar
  232. Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron MG (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2(7):649–655.  https://doi.org/10.1038/10204 CrossRefPubMedPubMedCentralGoogle Scholar
  233. Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 18(1):75–113PubMedCrossRefPubMedCentralGoogle Scholar
  234. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16(3):223–244PubMedCrossRefPubMedCentralGoogle Scholar
  235. Katz JL, Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK (2003) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D4 receptor mutant mice. Psychopharmacology 170(1):108–114.  https://doi.org/10.1007/s00213-003-1513-z CrossRefPubMedPubMedCentralGoogle Scholar
  236. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8(11):844–858.  https://doi.org/10.1038/nrn2234 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513(6):597–621.  https://doi.org/10.1002/cne.21983 CrossRefPubMedGoogle Scholar
  238. Kelz MB, Chen J, Carlezon WA Jr, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang YJ, Marotti L, Self DW, Tkatch T, Baranauskas G, Surmeier DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401(6750):272–276.  https://doi.org/10.1038/45790 CrossRefPubMedGoogle Scholar
  239. Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70(4):531–549PubMedCrossRefGoogle Scholar
  240. Kiba H, Jayaraman A (1994) Nicotine induced c-fos expression in the striatum is mediated mostly by dopamine D1 receptor and is dependent on NMDA stimulation. Brain Res Mol Brain Res 23(1–2):1–13PubMedCrossRefGoogle Scholar
  241. Kim J, Park BH, Lee JH, Park SK, Kim JH (2011) Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine. Biol Psychiatry 69(11):1026–1034.  https://doi.org/10.1016/j.biopsych.2011.01.013 CrossRefPubMedGoogle Scholar
  242. Kim YC, Alberico SL, Emmons E, Narayanan NS (2015) New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Front Biol (Beijing) 10(3):230–238.  https://doi.org/10.1007/s11515-015-1360-4 CrossRefGoogle Scholar
  243. Kim MS, Yu JH, Kim CH, Choi JY, Seo JH, Lee MY, Yi CH, Choi TH, Ryu YH, Lee JE, Lee BH, Kim H, Cho SR (2016) Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab 36(12):2122–2133.  https://doi.org/10.1177/0271678x15613525 CrossRefPubMedGoogle Scholar
  244. Knackstedt LA, Trantham-Davidson HL, Schwendt M (2014) The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict Biol 19(1):87–101.  https://doi.org/10.1111/adb.12061 CrossRefPubMedGoogle Scholar
  245. Kodjo CM, Klein JD (2002) Prevention and risk of adolescent substance abuse. The role of adolescents, families, and communities. Pediatr Clin North Am 49(2):257–268PubMedCrossRefGoogle Scholar
  246. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393(6682):266–268.  https://doi.org/10.1038/30498 CrossRefPubMedGoogle Scholar
  247. Kolb B, Li Y, Robinson T, Parker LA (2018) THC alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity. Synapse.  https://doi.org/10.1002/syn.22020 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30CrossRefGoogle Scholar
  249. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59(1):11–34.  https://doi.org/10.1016/j.neuron.2008.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  250. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58PubMedCrossRefPubMedCentralGoogle Scholar
  251. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129PubMedPubMedCentralCrossRefGoogle Scholar
  252. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238.  https://doi.org/10.1038/npp.2009.110 CrossRefPubMedPubMedCentralGoogle Scholar
  253. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773.  https://doi.org/10.1016/s2215-0366(16)00104-8 CrossRefPubMedPubMedCentralGoogle Scholar
  254. Koob GF, Caine SB, Parsons L, Markou A, Weiss F (1997) Opponent process model and psychostimulant addiction. Pharmacol Biochem Behav 57(3):513–521PubMedCrossRefPubMedCentralGoogle Scholar
  255. Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X (2014) Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 111(1):103–111.  https://doi.org/10.1152/jn.00269.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  256. Kourrich S, Rothwell PE, Klug JR, Thomas MJ (2007) Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 27(30):7921–7928.  https://doi.org/10.1523/jneurosci.1859-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  257. Koyama S, Brodie MS, Appel SB (2007) Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons. J Neurophysiol 97(3):1977–1985.  https://doi.org/10.1152/jn.00270.2006 CrossRefPubMedGoogle Scholar
  258. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8(11):1450–1457PubMedCrossRefGoogle Scholar
  259. Kuhar MJ, Pilotte NS (1996) Neurochemical changes in cocaine withdrawal. Trends Pharmacol Sci 17(7):260–264PubMedCrossRefPubMedCentralGoogle Scholar
  260. Kunko PM, French D, Izenwasser S (1998) Alterations in locomotor activity during chronic cocaine administration: effect on dopamine receptors and interaction with opioids. J Pharmacol Exp Ther 285(1):277–284PubMedPubMedCentralGoogle Scholar
  261. Kunz G, Englisch HJ, Wenzel J (1976) Spine-distribution of pyramidal neurons of the CAl-region of the rat hippocampus following long-term oral alcohol administration. J Hirnforsch 17(4):351–363PubMedPubMedCentralGoogle Scholar
  262. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18(9):1230–1232.  https://doi.org/10.1038/nn.4068 CrossRefPubMedPubMedCentralGoogle Scholar
  263. Lafragette A, Bardo MT, Lardeux V, Solinas M, Thiriet N (2017) Reduction of cocaine-induced locomotor effects by enriched environment is associated with cell-specific accumulation of deltafosb in striatal and cortical subregions. Int J Neuropsychopharmacol 20(3):237–246.  https://doi.org/10.1093/ijnp/pyw097 CrossRefPubMedPubMedCentralGoogle Scholar
  264. Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70(5):855–862PubMedPubMedCentralCrossRefGoogle Scholar
  265. Laurier LG, Corrigall WA, George SR (1994) Dopamine receptor density, sensitivity and mRNA levels are altered following self-administration of cocaine in the rat. Brain Res 634(1):31–40PubMedCrossRefPubMedCentralGoogle Scholar
  266. Lawrence AD, Evans AH, Lees AJ (2003) Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol 2(10):595–604PubMedCrossRefPubMedCentralGoogle Scholar
  267. Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P (2009) Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol 20(1):1–17.  https://doi.org/10.1097/fbp.0b013e3283242f05 CrossRefPubMedPubMedCentralGoogle Scholar
  268. Le Foll B, Collo G, Rabiner EA, Boileau I, Merlo Pich E, Sokoloff P (2014) Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. Prog Brain Res 211:255–275.  https://doi.org/10.1016/b978-0-444-63425-2.00011-8 CrossRefPubMedGoogle Scholar
  269. Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426PubMedCrossRefPubMedCentralGoogle Scholar
  270. Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 87:230–234PubMedCrossRefPubMedCentralGoogle Scholar
  271. Lecca D, Cacciapaglia F, Valentini V, Di Chiara G (2006a) Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology 188(1):63–74.  https://doi.org/10.1007/s00213-006-0475-3 CrossRefPubMedPubMedCentralGoogle Scholar
  272. Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G (2006b) Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology 184(3–4):435–446.  https://doi.org/10.1007/s00213-005-0280-4 CrossRefPubMedPubMedCentralGoogle Scholar
  273. Lecca D, Valentini V, Cacciapaglia F, Acquas E, Di Chiara G (2007) Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology 194(1):103–116.  https://doi.org/10.1007/s00213-007-0815-y CrossRefPubMedGoogle Scholar
  274. Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M (2012) Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37(5):1164–1176.  https://doi.org/10.1038/npp.2011.302 CrossRefPubMedPubMedCentralGoogle Scholar
  275. Lecca S, Meye FJ, Mameli M (2014) The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci 39(7):1170–1178.  https://doi.org/10.1111/ejn.12480 CrossRefPubMedPubMedCentralGoogle Scholar
  276. Lee TH, Gao WY, Davidson C, Ellinwood EH (1999) Altered activity of midbrain dopamine neurons following 7-day withdrawal from chronic cocaine abuse is normalized by D2 receptor stimulation during the early withdrawal phase. Neuropsychopharmacology 21(1):127–136.  https://doi.org/10.1016/s0893-133x(99)00011-1 CrossRefPubMedPubMedCentralGoogle Scholar
  277. Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103(9):3399–3404.  https://doi.org/10.1073/pnas.0511244103 CrossRefPubMedPubMedCentralGoogle Scholar
  278. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, Neumann PA, Graziane NM, Brown TE, Suska A, Guo C, Lobo MK, Sesack SR, Wolf ME, Nestler EJ, Shaham Y, Schluter OM, Dong Y (2013) Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 16(11):1644–1651.  https://doi.org/10.1038/nn.3533 CrossRefPubMedPubMedCentralGoogle Scholar
  279. Letchworth SR, Daunais JB, Hedgecock AA, Porrino LJ (1997) Effects of chronic cocaine administration on dopamine transporter mRNA and protein in the rat. Brain Res 750(1–2):214–222PubMedCrossRefPubMedCentralGoogle Scholar
  280. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21(8):2799–2807PubMedCrossRefPubMedCentralGoogle Scholar
  281. Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27(6):1027–1035.  https://doi.org/10.1016/s0893-133x(02)00366-4 CrossRefPubMedPubMedCentralGoogle Scholar
  282. Liggins J, Pihl RO, Benkelfat C, Leyton M (2012) The dopamine augmenter l-dopa does not affect positive mood in healthy human volunteers. PLoS One 7(1):e28370.  https://doi.org/10.1371/journal.pone.0028370 CrossRefPubMedPubMedCentralGoogle Scholar
  283. Liu X, Weiss F (2002) Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 300(3):882–889PubMedCrossRefGoogle Scholar
  284. Liu J, Nickolenko J, Sharp FR (1994) Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 91(18):8537–8541PubMedCrossRefPubMedCentralGoogle Scholar
  285. Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41.  https://doi.org/10.3389/fnana.2011.00041 CrossRefPubMedPubMedCentralGoogle Scholar
  286. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390.  https://doi.org/10.1126/science.1188472 CrossRefPubMedPubMedCentralGoogle Scholar
  287. Lodge DJ, Grace AA (2005) Acute and chronic corticotropin-releasing factor 1 receptor blockade inhibits cocaine-induced dopamine release: correlation with dopamine neuron activity. J Pharmacol Exp Ther 314(1):201–206.  https://doi.org/10.1124/jpet.105.084913 CrossRefPubMedPubMedCentralGoogle Scholar
  288. Lodge DJ, Grace AA (2006) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 103(13):5167–5172.  https://doi.org/10.1073/pnas.0510715103 CrossRefPubMedPubMedCentralGoogle Scholar
  289. Lodge DJ, Grace AA (2008) Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci 28(31):7876–7882.  https://doi.org/10.1523/jneurosci.1582-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  290. Lu W, Wolf ME (1999) Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32(2):119–131.  https://doi.org/10.1002/(sici)1098-2396(199905)32:2%3c119:aid-syn5%3e3.0.co;2-f CrossRefPubMedPubMedCentralGoogle Scholar
  291. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663.  https://doi.org/10.1016/j.neuron.2011.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  292. Luscher C, Ungless MA (2006) The mechanistic classification of addictive drugs. PLoS Med 3(11):e437.  https://doi.org/10.1371/journal.pmed.0030437 CrossRefPubMedPubMedCentralGoogle Scholar
  293. Lynd-Balta E, Haber SN (1994) The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59(3):625–640PubMedCrossRefPubMedCentralGoogle Scholar
  294. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, Lan Y, Balcita-Pedicino JJ, Wolf ME, Sesack SR, Shaham Y, Schluter OM, Huang YH, Dong Y (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83(6):1453–1467.  https://doi.org/10.1016/j.neuron.2014.08.023 CrossRefPubMedPubMedCentralGoogle Scholar
  295. MacAskill AF, Little JP, Cassel JM, Carter AG (2012) Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nat Neurosci 15(12):1624–1626.  https://doi.org/10.1038/nn.3254 CrossRefPubMedPubMedCentralGoogle Scholar
  296. Macey DJ, Rice WN, Freedland CS, Whitlow CT, Porrino LJ (2004) Patterns of functional activity associated with cocaine self-administration in the rat change over time. Psychopharmacology 172(4):384–392.  https://doi.org/10.1007/s00213-003-1676-7 CrossRefPubMedGoogle Scholar
  297. Maggos CE, Spangler R, Zhou Y, Schlussman SD, Ho A, Kreek MJ (1997) Quantitation of dopamine transporter mRNA in the rat brain: mapping, effects of “binge” cocaine administration and withdrawal. Synapse 26(1):55–61.  https://doi.org/10.1002/(sici)1098-2396(199705)26:1%3c55:aid-syn6%3e3.0.co;2-d CrossRefPubMedGoogle Scholar
  298. Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17(4):577–585.  https://doi.org/10.1038/nn.3664 CrossRefPubMedPubMedCentralGoogle Scholar
  299. Mailleux P, Verslype M, Preud’homme X, Vanderhaeghen JJ (1994) Activation of multiple transcription factor genes by tetrahydrocannabinol in rat forebrain. NeuroReport 5(10):1265–1268PubMedCrossRefPubMedCentralGoogle Scholar
  300. Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388(6642):586–589.  https://doi.org/10.1038/41567 CrossRefPubMedGoogle Scholar
  301. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Luscher C (2009) Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 12(8):1036–1041PubMedCrossRefGoogle Scholar
  302. Mantsch JR, Baker DA, Funk D, Le AD, Shaham Y (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41(1):335–356.  https://doi.org/10.1038/npp.2015.142 CrossRefPubMedGoogle Scholar
  303. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16(3):387–394PubMedCrossRefPubMedCentralGoogle Scholar
  304. Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4(1):17–26PubMedGoogle Scholar
  305. Martin M, Chen BT, Hopf FW, Bowers MS, Bonci A (2006) Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat Neurosci 9(7):868–869PubMedCrossRefPubMedCentralGoogle Scholar
  306. Martin BJ, Naughton BJ, Thirtamara-Rajamani K, Yoon DJ, Han DD, Devries AC, Gu HH (2011) Dopamine transporter inhibition is necessary for cocaine-induced increases in dendritic spine density in the nucleus accumbens. Synapse 65(6):490–496.  https://doi.org/10.1002/syn.20865 CrossRefPubMedPubMedCentralGoogle Scholar
  307. Martinez D, Gil R, Slifstein M, Hwang DR, Huang Y, Perez A, Kegeles L, Talbot P, Evans S, Krystal J, Laruelle M, Abi-Dargham A (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58(10):779–786.  https://doi.org/10.1016/j.biopsych.2005.04.044 CrossRefPubMedPubMedCentralGoogle Scholar
  308. Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60(4):288–294.  https://doi.org/10.1002/syn.20301 CrossRefPubMedPubMedCentralGoogle Scholar
  309. Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447(7148):1111–1115.  https://doi.org/10.1038/nature05860 CrossRefPubMedPubMedCentralGoogle Scholar
  310. May LJ, Kuhr WG, Wightman RM (1988) Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scan in vivo voltammetry. J Neurochem 51(4):1060–1069PubMedCrossRefPubMedCentralGoogle Scholar
  311. Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216.  https://doi.org/10.1126/science.1179438 CrossRefPubMedPubMedCentralGoogle Scholar
  312. Mazei-Robison MS, Couch RS, Shelton RC, Stein MA, Blakely RD (2005) Sequence variation in the human dopamine transporter gene in children with attention deficit hyperactivity disorder. Neuropharmacology 49(6):724–736.  https://doi.org/10.1016/j.neuropharm.2005.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  313. McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152PubMedCrossRefPubMedCentralGoogle Scholar
  314. McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ (2004) DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res 132(2):146–154PubMedCrossRefPubMedCentralGoogle Scholar
  315. McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29(3):503–537PubMedCrossRefPubMedCentralGoogle Scholar
  316. McGinty JF, Shi XD, Schwendt M, Saylor A, Toda S (2008) Regulation of psychostimulant-induced signaling and gene expression in the striatum. J Neurochem 104(6):1440–1449.  https://doi.org/10.1111/j.1471-4159.2008.05240.x CrossRefPubMedPubMedCentralGoogle Scholar
  317. McQuade JA, Xu M, Woods SC, Seeley RJ, Benoit SC (2003) Ethanol consumption in mice with a targeted disruption of the dopamine-3 receptor gene. Addict Biol 8(3):295–303.  https://doi.org/10.1080/13556210310001602202 CrossRefPubMedPubMedCentralGoogle Scholar
  318. Meador-Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJ Jr (1992) Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci Lett 145(2):209–212PubMedCrossRefPubMedCentralGoogle Scholar
  319. Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14(6):375–424.  https://doi.org/10.1016/0893-133x(95)00274-h CrossRefPubMedPubMedCentralGoogle Scholar
  320. Mereu G, Gessa GL (1984) Ethanol excites dopamine (DA) neurons and inhibits non-dopamine (non-DA) neurons in the Substantia nigra of rats. Ann Ist Super Sanita 20(1):11–15PubMedPubMedCentralGoogle Scholar
  321. Mergy MA, Gowrishankar R, Gresch PJ, Gantz SC, Williams J, Davis GL, Wheeler CA, Stanwood GD, Hahn MK, Blakely RD (2014) The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants. Proc Natl Acad Sci USA 111(44):E4779–E4788.  https://doi.org/10.1073/pnas.1417294111 CrossRefPubMedPubMedCentralGoogle Scholar
  322. Micevych PE, Meisel RL (2017) Integrating neural circuits controlling female sexual behavior. Front Syst Neurosci 11:42.  https://doi.org/10.3389/fnsys.2017.00042 CrossRefPubMedPubMedCentralGoogle Scholar
  323. Milella MS, Fotros A, Gravel P, Casey KF, Larcher K, Verhaeghe JA, Cox SM, Reader AJ, Dagher A, Benkelfat C, Leyton M (2016) Cocaine cue-induced dopamine release in the human prefrontal cortex. J Psychiatry Neurosci 41(5):322–330.  https://doi.org/10.1503/jpn.150207 CrossRefPubMedPubMedCentralGoogle Scholar
  324. Miner LL, Drago J, Chamberlain PM, Donovan D, Uhl GR (1995) Retained cocaine conditioned place preference in D1 receptor deficient mice. NeuroReport 6(17):2314–2316PubMedCrossRefPubMedCentralGoogle Scholar
  325. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225PubMedCrossRefGoogle Scholar
  326. Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 12(7):2609–2622PubMedCrossRefPubMedCentralGoogle Scholar
  327. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5(2):169–174.  https://doi.org/10.1038/nn798 CrossRefPubMedPubMedCentralGoogle Scholar
  328. Morice E, Denis C, Giros B, Nosten-Bertrand M (2010) Evidence of long-term expression of behavioral sensitization to both cocaine and ethanol in dopamine transporter knockout mice. Psychopharmacology 208(1):57–66.  https://doi.org/10.1007/s00213-009-1707-0 CrossRefPubMedPubMedCentralGoogle Scholar
  329. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22(2):389–395PubMedCrossRefPubMedCentralGoogle Scholar
  330. Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR, Friedman DP, Porrino LJ (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27(1):35–46.  https://doi.org/10.1016/s0893-133x(01)00427-4 CrossRefPubMedPubMedCentralGoogle Scholar
  331. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, Ehrenkaufer R, Mach RH (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9(8):1050–1056.  https://doi.org/10.1038/nn1737 CrossRefPubMedPubMedCentralGoogle Scholar
  332. Nader MA, Czoty PW, Gould RW, Riddick NV (2008) Review. Positron emission tomography imaging studies of dopamine receptors in primate models of addiction. Philos Trans R Soc Lond B Biol Sci 363(1507):3223–3232.  https://doi.org/10.1098/rstb.2008.0092 CrossRefPubMedPubMedCentralGoogle Scholar
  333. Nausieda PA (1985) Sinemet “abusers”. Clin Neuropharmacol 8(4):318–327PubMedCrossRefPubMedCentralGoogle Scholar
  334. Nestler EJ (1996) Under siege: the brain on opiates. Neuron 16(5):897–900PubMedCrossRefPubMedCentralGoogle Scholar
  335. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2(2):119–128PubMedCrossRefPubMedCentralGoogle Scholar
  336. Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32.  https://doi.org/10.1016/j.neuropharm.2004.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  337. Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci USA 98(20):11042–11046PubMedCrossRefPubMedCentralGoogle Scholar
  338. Newman AH, Blaylock BL, Nader MA, Bergman J, Sibley DR, Skolnick P (2012) Medication discovery for addiction: translating the dopamine D3 receptor hypothesis. Biochem Pharmacol 84(7):882–890.  https://doi.org/10.1016/j.bcp.2012.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  339. Nicolas C, Tauber C, Lepelletier FX, Chalon S, Belujon P, Galineau L, Solinas M (2017) Longitudinal changes in brain metabolic activity after withdrawal from escalation of cocaine self-administration. Neuropsychopharmacology 42(10):1981–1990.  https://doi.org/10.1038/npp.2017.109 CrossRefPubMedPubMedCentralGoogle Scholar
  340. Norman AB, Norman MK, Hall JF, Tsibulsky VL (1999) Priming threshold: a novel quantitative measure of the reinstatement of cocaine self-administration. Brain Res 831(1–2):165–174PubMedCrossRefPubMedCentralGoogle Scholar
  341. Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P (2003) Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116(1):19–22PubMedPubMedCentralCrossRefGoogle Scholar
  342. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16(5):305–312.  https://doi.org/10.1038/nrn3939 CrossRefPubMedPubMedCentralGoogle Scholar
  343. O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17(3):429–435PubMedCrossRefPubMedCentralGoogle Scholar
  344. O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15(5 Pt 1):3622–3639PubMedCrossRefPubMedCentralGoogle Scholar
  345. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427PubMedCrossRefPubMedCentralGoogle Scholar
  346. O’Malley KL, Harmon S, Tang L, Todd RD (1992) The rat dopamine D4 receptor: sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol 4:137–146PubMedPubMedCentralGoogle Scholar
  347. O’Neill B, Tilley MR, Han DD, Thirtamara-Rajamani K, Hill ER, Bishop GA, Zhou FM, During MJ, Gu HH (2014) Behavior of knock-in mice with a cocaine-insensitive dopamine transporter after virogenetic restoration of cocaine sensitivity in the striatum. Neuropharmacology 79:626–633.  https://doi.org/10.1016/j.neuropharm.2013.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  348. Onn SP, Grace AA (2000) Amphetamine withdrawal alters bistable states and cellular coupling in rat prefrontal cortex and nucleus accumbens neurons recorded in vivo. J Neurosci 20(6):2332–2345PubMedCrossRefPubMedCentralGoogle Scholar
  349. Ortinski PI, Vassoler FM, Carlson GC, Pierce RC (2012) Temporally dependent changes in cocaine-induced synaptic plasticity in the nucleus accumbens shell are reversed by D1-like dopamine receptor stimulation. Neuropsychopharmacology 37(7):1671–1682.  https://doi.org/10.1038/npp.2012.12 CrossRefPubMedPubMedCentralGoogle Scholar
  350. Pang TY, Hannan AJ, Lawrence AJ (2018) Novel approaches to alcohol rehabilitation Modification of stress-responsive brain regions through environmental enrichment. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2018.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  351. Parsons LH, Smith AD, Justice JB Jr (1991) Basal extracellular dopamine is decreased in the rat nucleus accumbens during abstinence from chronic cocaine. Synapse 9(1):60–65.  https://doi.org/10.1002/syn.890090109 CrossRefPubMedPubMedCentralGoogle Scholar
  352. Paterson NE, Myers C, Markou A (2000) Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology 152(4):440–446PubMedCrossRefPubMedCentralGoogle Scholar
  353. Pattison LP, McIntosh S, Sexton T, Childers SR, Hemby SE (2014) Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations. Synapse 68(10):437–444.  https://doi.org/10.1002/syn.21755 CrossRefPubMedPubMedCentralGoogle Scholar
  354. Patton MH, Bizup BT, Grace AA (2013) The infralimbic cortex bidirectionally modulates mesolimbic dopamine neuron activity via distinct neural pathways. J Neurosci 33(43):16865–16873.  https://doi.org/10.1523/jneurosci.2449-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  355. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23(28):9395–9402PubMedCrossRefPubMedCentralGoogle Scholar
  356. Perrotti LI, Weaver RR, Robison B, Renthal W, Maze I, Yazdani S, Elmore RG, Knapp DJ, Selley DE, Martin BR, Sim-Selley L, Bachtell RK, Self DW, Nestler EJ (2008) Distinct patterns of DeltaFosB induction in brain by drugs of abuse. Synapse 62(5):358–369.  https://doi.org/10.1002/syn.20500 CrossRefPubMedPubMedCentralGoogle Scholar
  357. Pezzella FR, Colosimo C, Vanacore N, Di Rezze S, Chianese M, Fabbrini G, Meco G (2005) Prevalence and clinical features of hedonistic homeostatic dysregulation in Parkinson’s disease. Mov Disord 20(1):77–81.  https://doi.org/10.1002/mds.20288 CrossRefPubMedPubMedCentralGoogle Scholar
  358. Phillips PE, Robinson DL, Stuber GD, Carelli RM, Wightman RM (2003a) Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol Med 79:443–464PubMedPubMedCentralGoogle Scholar
  359. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003b) Subsecond dopamine release promotes cocaine seeking. Nature 422(6932):614–618.  https://doi.org/10.1038/nature01476 CrossRefPubMedPubMedCentralGoogle Scholar
  360. Piazza PV, Le Moal ML (1996) Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 36:359–378.  https://doi.org/10.1146/annurev.pa.36.040196.002043 CrossRefPubMedPubMedCentralGoogle Scholar
  361. Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25(2):192–216PubMedCrossRefPubMedCentralGoogle Scholar
  362. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238.  https://doi.org/10.1016/j.neubiorev.2005.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  363. Pierce RC, Wolf ME (2013) Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission. Cold Spring Harb Perspect Med 3(2):a012021.  https://doi.org/10.1101/cshperspect.a012021 CrossRefPubMedPubMedCentralGoogle Scholar
  364. Pierce RC, O’Brien CP, Kenny PJ, Vanderschuren LJ (2012) Rational development of addiction pharmacotherapies: successes, failures, and prospects. Cold Spring Harb Perspect Med 2(6):a012880.  https://doi.org/10.1101/cshperspect.a012880 CrossRefPubMedGoogle Scholar
  365. Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92(26):12304–12308PubMedCrossRefGoogle Scholar
  366. Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382(6588):255–257.  https://doi.org/10.1038/382255a0 CrossRefPubMedGoogle Scholar
  367. Porrino LJ, Daunais JB, Smith HR, Nader MA (2004) The expanding effects of cocaine: studies in a nonhuman primate model of cocaine self-administration. Neurosci Biobehav Rev 27(8):813–820.  https://doi.org/10.1016/j.neubiorev.2003.11.013 CrossRefPubMedGoogle Scholar
  368. Pothos E, Rada P, Mark GP, Hoebel BG (1991) Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res 566(1–2):348–350PubMedCrossRefGoogle Scholar
  369. Purgianto A, Scheyer AF, Loweth JA, Ford KA, Tseng KY, Wolf ME (2013) Different adaptations in AMPA receptor transmission in the nucleus accumbens after short vs long access cocaine self-administration regimens. Neuropsychopharmacology 38(9):1789–1797.  https://doi.org/10.1038/npp.2013.78 CrossRefPubMedPubMedCentralGoogle Scholar
  370. Rabinak CA, Nirenberg MJ (2010) Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol 67(1):58–63PubMedCrossRefGoogle Scholar
  371. Ranaldi R, Pocock D, Zereik R, Wise RA (1999) Dopamine fluctuations in the nucleus accumbens during maintenance, extinction, and reinstatement of intravenous d-amphetamine self-administration. J Neurosci 19(10):4102–4109PubMedCrossRefGoogle Scholar
  372. Rasmussen K, Czachura JF (1995) Nicotine withdrawal leads to increased firing rates of midbrain dopamine neurons. NeuroReport 7(1):329–332PubMedCrossRefPubMedCentralGoogle Scholar
  373. Ren T, Sagar SM (1992) Induction of c-fos immunostaining in the rat brain after the systemic administration of nicotine. Brain Res Bull 29(5):589–597PubMedCrossRefGoogle Scholar
  374. Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, Xu M (2010) Dopamine D1 and N-methyl-d-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience 168(1):48–60.  https://doi.org/10.1016/j.neuroscience.2010.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  375. Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14(8):341–350PubMedPubMedCentralCrossRefGoogle Scholar
  376. Rickhag M, Hansen FH, Sorensen G, Strandfelt KN, Andresen B, Gotfryd K, Madsen KL, Vestergaard-Klewe I, Ammendrup-Johnsen I, Eriksen J, Newman AH, Fuchtbauer EM, Gomeza J, Woldbye DP, Wortwein G, Gether U (2013) A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter. Nat Commun 4:1580.  https://doi.org/10.1038/ncomms2568 CrossRefPubMedPubMedCentralGoogle Scholar
  377. Riddle JL, Rokosik SL, Napier TC (2012) Pramipexole- and methamphetamine-induced reward-mediated behavior in a rodent model of Parkinson’s disease and controls. Behav Brain Res 233(1):15–23.  https://doi.org/10.1016/j.bbr.2012.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  378. Riley JN, Walker DW (1978) Morphological alterations in hippocampus after long-term alcohol consumption in mice. Science 201(4356):646–648PubMedCrossRefPubMedCentralGoogle Scholar
  379. Risinger FO, Freeman PA, Rubinstein M, Low MJ, Grandy DK (2000) Lack of operant ethanol self-administration in dopamine D2 receptor knockout mice. Psychopharmacology 152(3):343–350PubMedCrossRefPubMedCentralGoogle Scholar
  380. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291PubMedCrossRefPubMedCentralGoogle Scholar
  381. Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363(1507):3137–3146PubMedPubMedCentralCrossRefGoogle Scholar
  382. Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17(21):8491–8497PubMedCrossRefPubMedCentralGoogle Scholar
  383. Robinson TE, Kolb B (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33(2):160–162.  https://doi.org/10.1002/(sici)1098-2396(199908)33:2%3c160:aid-syn6%3e3.0.co;2-s CrossRefPubMedGoogle Scholar
  384. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46.  https://doi.org/10.1016/j.neuropharm.2004.06.025 CrossRefPubMedGoogle Scholar
  385. Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39(3):257–266.  https://doi.org/10.1002/1098-2396(20010301)39:3%3c257:aid-syn1007%3e3.0.co;2-1 CrossRefPubMedPubMedCentralGoogle Scholar
  386. Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49(10):1763–1773PubMedCrossRefPubMedCentralGoogle Scholar
  387. Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1(2):132–137.  https://doi.org/10.1038/381 CrossRefPubMedPubMedCentralGoogle Scholar
  388. Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221(2–3):227–234PubMedCrossRefPubMedCentralGoogle Scholar
  389. Rossi MA, Yin HH (2015) Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning. Front Integr Neurosci 9:37.  https://doi.org/10.3389/fnint.2015.00037 CrossRefPubMedPubMedCentralGoogle Scholar
  390. Rothman RB, Baumann MH, Prisinzano TE, Newman AH (2008) Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem Pharmacol 75(1):2–16.  https://doi.org/10.1016/j.bcp.2007.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  391. Rouge-Pont F, Usiello A, Benoit-Marand M, Gonon F, Piazza PV, Borrelli E (2002) Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors. J Neurosci 22(8):3293–3301PubMedCrossRefPubMedCentralGoogle Scholar
  392. Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90(6):991–1001PubMedCrossRefGoogle Scholar
  393. Ruesink GB, Georgiadis JR (2017) Brain imaging of human sexual response: recent developments and future directions. Curr Sex Health Rep 9(4):183–191.  https://doi.org/10.1007/s11930-017-0123-4 CrossRefPubMedPubMedCentralGoogle Scholar
  394. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33(6):267–276.  https://doi.org/10.1016/j.tins.2010.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  395. Salahpour A, Ramsey AJ, Medvedev IO, Kile B, Sotnikova TD, Holmstrand E, Ghisi V, Nicholls PJ, Wong L, Murphy K, Sesack SR, Wightman RM, Gainetdinov RR, Caron MG (2008) Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci USA 105(11):4405–4410.  https://doi.org/10.1073/pnas.0707646105 CrossRefPubMedPubMedCentralGoogle Scholar
  396. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191(3):461–482.  https://doi.org/10.1007/s00213-006-0668-9 CrossRefPubMedGoogle Scholar
  397. Schmidt HD, Anderson SM, Pierce RC (2006) Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Eur J Neurosci 23(1):219–228.  https://doi.org/10.1111/j.1460-9568.2005.04524.x CrossRefPubMedPubMedCentralGoogle Scholar
  398. Schulteis G, Markou A, Gold LH, Stinus L, Koob GF (1994) Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose-response analysis. J Pharmacol Exp Ther 271(3):1391–1398PubMedPubMedCentralGoogle Scholar
  399. Schulteis G, Markou A, Cole M, Koob GF (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA 92(13):5880–5884PubMedCrossRefPubMedCentralGoogle Scholar
  400. Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7(2):191–197PubMedCrossRefPubMedCentralGoogle Scholar
  401. Schultz W (1998) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690PubMedCrossRefPubMedCentralGoogle Scholar
  402. Schultz W (2011) Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron 69(4):603–617.  https://doi.org/10.1016/j.neuron.2011.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  403. Schultz W (2016) Dopamine reward prediction error coding. Dialogues Clin Neurosci 18(1):23–32PubMedPubMedCentralGoogle Scholar
  404. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599PubMedCrossRefPubMedCentralGoogle Scholar
  405. See RE, Elliott JC, Feltenstein MW (2007) The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology 194(3):321–331.  https://doi.org/10.1007/s00213-007-0850-8 CrossRefPubMedPubMedCentralGoogle Scholar
  406. Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35(1):27–47PubMedCrossRefPubMedCentralGoogle Scholar
  407. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168(1–2):3–20.  https://doi.org/10.1007/s00213-002-1224-x CrossRefPubMedGoogle Scholar
  408. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42PubMedCrossRefPubMedCentralGoogle Scholar
  409. Sharp T, Zetterstrom T, Ungerstedt U (1986) An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J Neurochem 47(1):113–122PubMedCrossRefPubMedCentralGoogle Scholar
  410. Shepard PD, Bunney BS (1988) Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res 463(2):380–384PubMedCrossRefPubMedCentralGoogle Scholar
  411. Shepard JD, Chuang DT, Shaham Y, Morales M (2006) Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat. Psychopharmacology 185(4):505–513.  https://doi.org/10.1007/s00213-006-0316-4 CrossRefPubMedPubMedCentralGoogle Scholar
  412. Silvia CP, Jaber M, King GR, Ellinwood EH, Caron MG (1997) Cocaine and amphetamine elicit differential effects in rats with a unilateral injection of dopamine transporter antisense oligodeoxynucleotides. Neuroscience 76(3):737–747PubMedCrossRefPubMedCentralGoogle Scholar
  413. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158(4):343–359PubMedCrossRefPubMedCentralGoogle Scholar
  414. Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9(5):388–395PubMedCrossRefPubMedCentralGoogle Scholar
  415. Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130.  https://doi.org/10.1196/annals.1441.030 CrossRefPubMedPubMedCentralGoogle Scholar
  416. Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12(4):287–303.  https://doi.org/10.1002/syn.890120406 CrossRefPubMedGoogle Scholar
  417. Sokoloff P, Giros B, Martres MP, Barthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151PubMedCrossRefPubMedCentralGoogle Scholar
  418. Solinas M, Scherma M, Tanda G, Wertheim CE, Fratta W, Goldberg SR (2007) Nicotinic facilitation of delta9-tetrahydrocannabinol discrimination involves endogenous anandamide. J Pharmacol Exp Ther 321(3):1127–1134.  https://doi.org/10.1124/jpet.106.116830 CrossRefPubMedPubMedCentralGoogle Scholar
  419. Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154(2):369–383.  https://doi.org/10.1038/bjp.2008.130 CrossRefPubMedPubMedCentralGoogle Scholar
  420. Solinas M, Thiriet N, El Rawas R, Lardeux V, Jaber M (2009) Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology 34(5):1102–1111.  https://doi.org/10.1038/npp.2008.51 CrossRefPubMedPubMedCentralGoogle Scholar
  421. Solinas M, Tanda G, Wertheim CE, Goldberg SR (2010a) Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology 209(2):191–202.  https://doi.org/10.1007/s00213-010-1789-8 CrossRefPubMedPubMedCentralGoogle Scholar
  422. Solinas M, Thiriet N, Chauvet C, Jaber M (2010b) Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol 92(4):572–592.  https://doi.org/10.1016/j.pneurobio.20https://doi.org/10.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  423. Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81(2):119–145PubMedCrossRefPubMedCentralGoogle Scholar
  424. Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95(13):7699–7704PubMedCrossRefPubMedCentralGoogle Scholar
  425. Sousa FC, Gomes PB, Macedo DS, Marinho MM, Viana GS (1999) Early withdrawal from repeated cocaine administration upregulates muscarinic and dopaminergic D2-like receptors in rat neostriatum. Pharmacol Biochem Behav 62(1):15–20PubMedCrossRefPubMedCentralGoogle Scholar
  426. Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837PubMedPubMedCentralCrossRefGoogle Scholar
  427. Spiga S, Mulas G, Piras F, Diana M (2014a) The “addicted” spine. Front Neuroanat 8:110.  https://doi.org/10.3389/fnana.2014.00110 CrossRefPubMedPubMedCentralGoogle Scholar
  428. Spiga S, Talani G, Mulas G, Licheri V, Fois GR, Muggironi G, Masala N, Cannizzaro C, Biggio G, Sanna E, Diana M (2014b) Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proc Natl Acad Sci USA 111(35):E3745–E3754.  https://doi.org/10.1073/pnas.1406768111 CrossRefPubMedPubMedCentralGoogle Scholar
  429. Stairs DJ, Bardo MT (2009) Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol Biochem Behav 92(3):377–382.  https://doi.org/10.1016/j.pbb.2009.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  430. Stefanski R, Ladenheim B, Lee SH, Cadet JL, Goldberg SR (1999) Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. Eur J Pharmacol 371(2–3):123–135PubMedCrossRefPubMedCentralGoogle Scholar
  431. Stefanski R, Lee SH, Yasar S, Cadet JL, Goldberg SR (2002) Lack of persistent changes in the dopaminergic system of rats withdrawn from methamphetamine self-administration. Eur J Pharmacol 439(1–3):59–68PubMedCrossRefPubMedCentralGoogle Scholar
  432. Stuber GD, Hopf FW, Hahn J, Cho SL, Guillory A, Bonci A (2008) Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcohol Clin Exp Res 32(10):1714–1720.  https://doi.org/10.1111/j.1530-0277.2008.00749.x CrossRefPubMedPubMedCentralGoogle Scholar
  433. Suckling J, Nestor LJ (2017) The neurobiology of addiction: the perspective from magnetic resonance imaging present and future. Addiction 112(2):360–369.  https://doi.org/10.1111/add.13474 CrossRefPubMedPubMedCentralGoogle Scholar
  434. Sung KW, Choi S, Lovinger DM (2001) Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurophysiol 86(5):2405–2412.  https://doi.org/10.1152/jn.2001.86.5.2405 CrossRefPubMedPubMedCentralGoogle Scholar
  435. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16(20):6579-6591PubMedCrossRefGoogle Scholar
  436. Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW (2000) Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 38(5):596–612PubMedCrossRefPubMedCentralGoogle Scholar
  437. Szabo J (1979) Strionigral and nigrostriatal connections. Anatomical studies. Appl Neurophysiol 42(1–2):9–12PubMedPubMedCentralGoogle Scholar
  438. Tajuddin NF, Druse MJ (1996) Effects of chronic alcohol consumption and aging on dopamine D2 receptors in Fischer 344 rats. Alcohol Clin Exp Res 20(1):144–151PubMedCrossRefPubMedCentralGoogle Scholar
  439. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276(5321):2048–2050PubMedCrossRefPubMedCentralGoogle Scholar
  440. Tanda G, Loddo P, Di Chiara G (1999) Dependence of mesolimbic dopamine transmission on delta9-tetrahydrocannabinol. Eur J Pharmacol 376(1–2):23–26PubMedCrossRefPubMedCentralGoogle Scholar
  441. Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208.  https://doi.org/10.1016/s0079-6123(06)60011-3 CrossRefPubMedPubMedCentralGoogle Scholar
  442. Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15(4):3092–3103PubMedCrossRefPubMedCentralGoogle Scholar
  443. Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548(1–2):100–110PubMedCrossRefPubMedCentralGoogle Scholar
  444. Thiriet N, Aunis D, Zwiller J (2000) C-fos and egr-1 immediate-early gene induction by cocaine and cocaethylene in rat brain: a comparative study. Ann N Y Acad Sci 914:46–57PubMedCrossRefPubMedCentralGoogle Scholar
  445. Thiriet N, Jouvert P, Gobaille S, Solov’eva O, Gough B, Aunis D, Ali S, Zwiller J (2001a) C-type natriuretic peptide (CNP) regulates cocaine-induced dopamine increase and immediate early gene expression in rat brain. Eur J Neurosci 14(10):1702–1708PubMedCrossRefPubMedCentralGoogle Scholar
  446. Thiriet N, Zwiller J, Ali SF (2001b) Induction of the immediate early genes egr-1 and c-fos by methamphetamine in mouse brain. Brain Res 919(1):31–40PubMedCrossRefPubMedCentralGoogle Scholar
  447. Thiriet N, Amar L, Toussay X, Lardeux V, Ladenheim B, Becker KG, Cadet JL, Solinas M, Jaber M (2008) Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Res 1222:31–41.  https://doi.org/10.1016/j.brainres.2008.05.030 CrossRefPubMedPubMedCentralGoogle Scholar
  448. Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4(12):1217–1223.  https://doi.org/10.1038/nn757 CrossRefPubMedPubMedCentralGoogle Scholar
  449. Thomsen M, Han DD, Gu HH, Caine SB (2009) Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther 331(1):204–211.  https://doi.org/10.1124/jpet.109.156265 CrossRefPubMedPubMedCentralGoogle Scholar
  450. Tiberi M, Jarvie KR, Silvia C, Falardeau P, Gingrich JA, Godinot N, Bertrand L, Yang-Feng TL, Fremeau RT, Caron MG (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1a receptor. Proc Natl Acad Sci USA 88:7491–7495PubMedCrossRefPubMedCentralGoogle Scholar
  451. Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron MG (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30(1):121–134PubMedCrossRefPubMedCentralGoogle Scholar
  452. Tripathi A, Prensa L, Cebrian C, Mengual E (2010) Axonal branching patterns of nucleus accumbens neurons in the rat. J Comp Neurol 518(22):4649–4673.  https://doi.org/10.1002/cne.22484 CrossRefPubMedPubMedCentralGoogle Scholar
  453. Tzavara ET, Li DL, Moutsimilli L, Bisogno T, Di Marzo V, Phebus LA, Nomikos GG, Giros B (2006) Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. Biol Psychiatry 59(6):508–515.  https://doi.org/10.1016/j.biopsych.2005.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  454. Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122PubMedCrossRefPubMedCentralGoogle Scholar
  455. Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587.  https://doi.org/10.1038/35079077 CrossRefPubMedPubMedCentralGoogle Scholar
  456. Ungless MA, Argilli E, Bonci A (2010) Effects of stress and aversion on dopamine neurons: implications for addiction. Neurosci Biobehav Rev 35(2):151–156.  https://doi.org/10.1016/j.neubiorev.2010.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  457. Unterwald EM, Ho A, Rubenfeld JM, Kreek MJ (1994) Time course of the development of behavioral sensitization and dopamine receptor up-regulation during binge cocaine administration. J Pharmacol Exp Ther 270(3):1387–1396PubMedPubMedCentralGoogle Scholar
  458. Unterwald EM, Fillmore J, Kreek MJ (1996) Chronic repeated cocaine administration increases dopamine D1 receptor-mediated signal transduction. Eur J Pharmacol 318(1):31–35PubMedCrossRefPubMedCentralGoogle Scholar
  459. Urban NB, Kegeles LS, Slifstein M, Xu X, Martinez D, Sakr E, Castillo F, Moadel T, O’Malley SS, Krystal JH, Abi-Dargham A (2010) Sex differences in striatal dopamine release in young adults after oral alcohol challenge: a positron emission tomography imaging study with [(1)(1)C]raclopride. Biol Psychiatry 68(8):689–696.  https://doi.org/10.1016/j.biopsych.2010.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  460. Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20(23):8701–8709PubMedCrossRefPubMedCentralGoogle Scholar
  461. Valjent E, Mitchell JM, Besson MJ, Caboche J, Maldonado R (2002) Behavioural and biochemical evidence for interactions between Delta 9-tetrahydrocannabinol and nicotine. Br J Pharmacol 135(2):564–578.  https://doi.org/10.1038/sj.bjp.0704479 CrossRefPubMedPubMedCentralGoogle Scholar
  462. Valjent E, Corbille AG, Bertran-Gonzalez J, Herve D, Girault JA (2006) Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc Natl Acad Sci USA 103(8):2932–2937.  https://doi.org/10.1073/pnas.0511030103 CrossRefPubMedPubMedCentralGoogle Scholar
  463. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, Girault JA (2010) Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35(2):401–415.  https://doi.org/10.1038/npp.2009.143 CrossRefPubMedPubMedCentralGoogle Scholar
  464. van der Kooy D, Swerdlow NR, Koob GF (1983) Paradoxical reinforcing properties of apomorphine: effects of nucleus accumbens and area postrema lesions. Brain Res 259(1):111–118PubMedCrossRefPubMedCentralGoogle Scholar
  465. Van Tol HHM, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614PubMedCrossRefPubMedCentralGoogle Scholar
  466. Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–1019.  https://doi.org/10.1126/science.1098975 CrossRefPubMedPubMedCentralGoogle Scholar
  467. Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25(38):8665–8670.  https://doi.org/10.1523/jneurosci.0925-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  468. Verrico CD, Haile CN, Newton TF, Kosten TR, De La Garza R (2013) Pharmacotherapeutics for substance-use disorders: a focus on dopaminergic medications. Expert Opin Investig Drugs 22(12):1549–1568.  https://doi.org/10.1517/13543784.2013.836488 CrossRefPubMedPubMedCentralGoogle Scholar
  469. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177.  https://doi.org/10.1002/syn.890140210 CrossRefPubMedPubMedCentralGoogle Scholar
  470. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N (1999) Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 156(9):1440–1443.  https://doi.org/10.1176/ajp.156.9.1440 CrossRefPubMedPubMedCentralGoogle Scholar
  471. Volkow ND, Wang GJ, Fowler JS, Thanos PP, Logan J, Gatley SJ, Gifford A, Ding YS, Wong C, Pappas N (2002) Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46(2):79–82.  https://doi.org/10.1002/syn.10137 CrossRefPubMedPubMedCentralGoogle Scholar
  472. Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9(6):557–569PubMedCrossRefPubMedCentralGoogle Scholar
  473. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26(24):6583–6588.  https://doi.org/10.1523/jneurosci.1544-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  474. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56(Suppl 1):3–8.  https://doi.org/10.1016/j.neuropharm.2008.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  475. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108(37):15037–15042.  https://doi.org/10.1073/pnas.1010654108 CrossRefPubMedPubMedCentralGoogle Scholar
  476. Volkow ND, Wang GJ, Tomasi D, Baler RD (2013) Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol 23(4):639–648.  https://doi.org/10.1016/j.conb.2013.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  477. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from the brain disease model of addiction. N Engl J Med 374(4):363–371.  https://doi.org/10.1056/nejmra1511480 CrossRefPubMedPubMedCentralGoogle Scholar
  478. Volkow ND, Wise RA, Baler R (2017) The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 18(12):741–752.  https://doi.org/10.1038/nrn.2017.130 CrossRefPubMedPubMedCentralGoogle Scholar
  479. Voon V, Fernagut PO, Wickens J, Baunez C, Rodriguez M, Pavon N, Juncos JL, Obeso JA, Bezard E (2009) Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol 8(12):1140–1149.  https://doi.org/10.1016/s1474-4422(09)70287-x CrossRefPubMedPubMedCentralGoogle Scholar
  480. Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, Obeso J, Bezard E, Fernagut PO (2017) Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol 16(3):238–250.  https://doi.org/10.1016/s1474-4422(17)30004-2 CrossRefPubMedPubMedCentralGoogle Scholar
  481. Walaas I, Fonnum F (1980) Biochemical evidence for gamma-aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat. Neuroscience 5(1):63–72PubMedCrossRefPubMedCentralGoogle Scholar
  482. Wall NR, De La Parra M, Callaway EM, Kreitzer AC (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79(2):347–360.  https://doi.org/10.1016/j.neuron.2013.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  483. Wanat MJ, Bonci A (2008) Dose-dependent changes in the synaptic strength on dopamine neurons and locomotor activity after cocaine exposure. Synapse 62(10):790–795.  https://doi.org/10.1002/syn.20546 CrossRefPubMedPubMedCentralGoogle Scholar
  484. Wanat MJ, Sparta DR, Hopf FW, Bowers MS, Melis M, Bonci A (2009) Strain specific synaptic modifications on ventral tegmental area dopamine neurons after ethanol exposure. Biol Psychiatry 65(8):646–653.  https://doi.org/10.1016/j.biopsych.2008.10.042 CrossRefPubMedGoogle Scholar
  485. Warren N, O’Gorman C, Lehn A, Siskind D (2017) Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. J Neurol Neurosurg Psychiatry 88(12):1060–1064.  https://doi.org/10.1136/jnnp-2017-315985 CrossRefPubMedPubMedCentralGoogle Scholar
  486. Weiner DM, Levey AI, Sunahara RK, Niznik HH, O’Dowd BF, Brann MR (1991) Dopamine D1 and D2 receptor mRNA expression in rat brain. Proc Natl Acad Sci USA 88:1859–1863PubMedCrossRefPubMedCentralGoogle Scholar
  487. Weiss F, Markou A, Lorang MT, Koob GF (1992) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 593(2):314–318PubMedCrossRefPubMedCentralGoogle Scholar
  488. Weiss F, Parsons LH, Schulteis G, Hyytia P, Lorang MT, Bloom FE, Koob GF (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16(10):3474–3485PubMedCrossRefPubMedCentralGoogle Scholar
  489. White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51(1–2):141–153PubMedCrossRefPubMedCentralGoogle Scholar
  490. White FJ, Wolf ME (1991) Psychomotor stimulants. In: Pratt JA (ed) The biological basis of drug tolerance and dependence. Academic Press, London, pp 153–197Google Scholar
  491. Willuhn I, Burgeno LM, Everitt BJ, Phillips PE (2012) Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci USA 109(50):20703–20708.  https://doi.org/10.1073/pnas.1213460109 CrossRefPubMedGoogle Scholar
  492. Willuhn I, Burgeno LM, Groblewski PA, Phillips PE (2014) Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat Neurosci 17(5):704–709.  https://doi.org/10.1038/nn.3694 CrossRefPubMedPubMedCentralGoogle Scholar
  493. Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 152(2):215–247PubMedCrossRefGoogle Scholar
  494. Wise RA (1984) Neural mechanisms of the reinforcing action of cocaine. NIDA Res Monogr 50:15–33PubMedGoogle Scholar
  495. Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 32(10):517–524.  https://doi.org/10.1016/j.tins.2009.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  496. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492PubMedCrossRefGoogle Scholar
  497. Wise RA, Munn E (1995) Withdrawal from chronic amphetamine elevates baseline intracranial self-stimulation thresholds. Psychopharmacology 117(2):130–136PubMedCrossRefGoogle Scholar
  498. Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201(4352):262–264PubMedCrossRefGoogle Scholar
  499. Wise RA, Leone P, Rivest R, Leeb K (1995a) Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse 21(2):140–148.  https://doi.org/10.1002/syn.890210207 CrossRefPubMedPubMedCentralGoogle Scholar
  500. Wise RA, Newton P, Leeb K, Burnette B, Pocock D, Justice JB Jr (1995b) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120(1):10–20PubMedCrossRefGoogle Scholar
  501. Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54(6):679–720PubMedCrossRefPubMedCentralGoogle Scholar
  502. Wolf ME (2010) Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and cocaine. Neurotox Res 18(3–4):393–409.  https://doi.org/10.1007/s12640-010-9176-0 CrossRefPubMedPubMedCentralGoogle Scholar
  503. Wolf ME (2016) Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 17(6):351–365.  https://doi.org/10.1038/nrn.2016.39 CrossRefPubMedPubMedCentralGoogle Scholar
  504. Wolf ME, Ferrario CR (2010) AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 35(2):185–211.  https://doi.org/10.1016/j.neubiorev.2010.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  505. Wolf ME, Tseng KY (2012) Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci 5:72.  https://doi.org/10.3389/fnmol.2012.00072 CrossRefPubMedPubMedCentralGoogle Scholar
  506. Wolf ME, White FJ, Nassar R, Brooderson RJ, Khansa MR (1993) Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J Pharmacol Exp Ther 264(1):249–255PubMedPubMedCentralGoogle Scholar
  507. Wong DF, Kuwabara H, Schretlen DJ, Bonson KR, Zhou Y, Nandi A, Brasic JR, Kimes AS, Maris MA, Kumar A, Contoreggi C, Links J, Ernst M, Rousset O, Zukin S, Grace AA, Lee JS, Rohde C, Jasinski DR, Gjedde A, London ED (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31(12):2716–2727.  https://doi.org/10.1038/sj.npp.1301194 CrossRefPubMedPubMedCentralGoogle Scholar
  508. Wu X, French ED (2000) Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacology 39(3):391–398PubMedCrossRefPubMedCentralGoogle Scholar
  509. Xia Y, Goebel DJ, Kapatos G, Bannon MJ (1992) Quantitation of rat dopamine transporter mRNA: effects of cocaine treatment and withdrawal. J Neurochem 59(3):1179–1182PubMedCrossRefPubMedCentralGoogle Scholar
  510. Xia J, Meyers AM, Beeler JA (2017) Chronic nicotine alters corticostriatal plasticity in the striatopallidal pathway mediated By NR2B-containing silent synapses. Neuropsychopharmacology 42(12):2314–2324.  https://doi.org/10.1038/npp.2017.87 CrossRefPubMedPubMedCentralGoogle Scholar
  511. Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, Tonegawa S (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79(4):729–742PubMedCrossRefPubMedCentralGoogle Scholar
  512. Yager LM, Garcia AF, Wunsch AM, Ferguson SM (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301:529–541.  https://doi.org/10.1016/j.neuroscience.2015.06.033 CrossRefPubMedPubMedCentralGoogle Scholar
  513. Yao WD, Gainetdinov RR, Arbuckle MI, Sotnikova TD, Cyr M, Beaulieu JM, Torres GE, Grant SG, Caron MG (2004) Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41(4):625–638PubMedCrossRefPubMedCentralGoogle Scholar
  514. Yokel RA, Wise RA (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187(4176):547–549PubMedCrossRefPubMedCentralGoogle Scholar
  515. Zahniser NR, Peris J, Dwoskin LP, Curella P, Yasuda RP, O’Keefe L, Boyson SJ (1998) Sensitization to cocaine in the nigrostriatal dopamine system. NIDA Res Monogr 88:55–77Google Scholar
  516. Zald DH, Boileau I, El-Dearedy W, Gunn R, McGlone F, Dichter GS, Dagher A (2004) Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci 24(17):4105–4112.  https://doi.org/10.1523/jneurosci.4643-03.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  517. Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci 30(46):15457–15463.  https://doi.org/10.1523/jneurosci.4072-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  518. Zhang XF, Hu XT, White FJ, Wolf ME (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 281(2):699–706PubMedGoogle Scholar
  519. Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009) Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76(2):396–404.  https://doi.org/10.1124/mol.109.056317 CrossRefPubMedPubMedCentralGoogle Scholar
  520. Zhang L, Li J, Liu N, Wang B, Gu J, Zhang M, Zhou Z, Jiang Y, Zhang L, Zhang L (2012) Signaling via dopamine D1 and D3 receptors oppositely regulates cocaine-induced structural remodeling of dendrites and spines. Neurosignals 20(1):15–34.  https://doi.org/10.1159/000330743 CrossRefPubMedGoogle Scholar
  521. Zhou FC, Anthony B, Dunn KW, Lindquist WB, Xu ZC, Deng P (2007) Chronic alcohol drinking alters neuronal dendritic spines in the brain reward center nucleus accumbens. Brain Res 1134(1):148–161.  https://doi.org/10.1016/j.brainres.2006.11.046 CrossRefPubMedPubMedCentralGoogle Scholar
  522. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 98(4):1982–1987.  https://doi.org/10.1073/pnas.98.4.1982 CrossRefPubMedGoogle Scholar
  523. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ (2018) Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron 98(5):886–903.  https://doi.org/10.1016/j.neuron.2018.03.048 CrossRefPubMedGoogle Scholar
  524. Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TM, Allen JM, Mizumori SJ, Bonci A, Palmiter RD (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14(5):620–626.  https://doi.org/10.1038/nn.2808 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et CliniquesPoitiersFrance
  2. 2.CHU de PoitiersPoitiersFrance

Personalised recommendations