Advertisement

Journal of Neural Transmission

, Volume 126, Issue 4, pp 433–448 | Cite as

Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease

  • John P. M. FinbergEmail author
Neurology and Preclinical Neurological Studies - Review Article
  • 293 Downloads

Abstract

MAO-B and COMT are both enzymes involved in dopamine breakdown and metabolism. Inhibitors of these enzymes are used in the treatment of Parkinson’s disease. This review article describes the scientific background to the localization and function of the enzymes, the physiological changes resulting from their inhibition, and the basic and clinical pharmacology of the various inhibitors and their role in treatment of Parkinson’s disease.

Keywords

MAO-B COMT l-DOPA Dopamine synthesis Dyskinesia 

Notes

Compliance with ethical standards

Conflict of interest

The author was a developer of rasagiline and receives royalties from the sale of this drug. This financial connection with the pharmaceutical industry in no way affected his opinions in writing this article.

References

  1. Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525(1):36–44CrossRefPubMedGoogle Scholar
  2. Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27(12):1029–1034CrossRefPubMedGoogle Scholar
  3. Aluf Y, Vaya J, Khatib S, Finberg JP (2011) Alterations in striatal oxidative stress level produced by pharmacological manipulation of dopamine as shown by a novel synthetic marker molecule. Neuropharmacology 61(1–2):87–94CrossRefPubMedGoogle Scholar
  4. Aluf Y, Vaya J, Khatib S, Loboda Y, Finberg JP (2013) Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway. Neuropharmacology 65:48–57CrossRefPubMedGoogle Scholar
  5. Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R et al (2007) Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 32(5):1011–1020CrossRefPubMedGoogle Scholar
  6. Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5(3):165–176CrossRefPubMedGoogle Scholar
  7. Asanuma M, Miyazaki I, Murakami S, Diaz-Corrales FJ, Ogawa N (2014) Striatal astrocytes act as a reservoir for l-DOPA. PLoS One 9(9):e106362CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bar Am O, Amit T, Youdim MB (2004) Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett 355(3):169–172CrossRefPubMedGoogle Scholar
  9. Bar-Am O, Weinreb O, Amit T, Youdim MB (2010) The neuroprotective mechanism of 1-(R)-aminoindan, the major metabolite of the anti-parkinsonian drug rasagiline. J Neurochem 112(5):1131–1137CrossRefPubMedGoogle Scholar
  10. Bar-Am O, Gross A, Friedman R, Finberg JP (2012) Cardiovascular baroreceptor activity and selective inhibition of monoamine oxidase. Eur J Pharmacol 683(1–3):226–230CrossRefPubMedGoogle Scholar
  11. Bartl J, Muller T, Grunblatt E, Gerlach M, Riederer P (2014) Chronic monoamine oxidase-B inhibitor treatment blocks monoamine oxidase—a enzyme activity. J Neural Transm (Vienna) 121(4):379–383CrossRefGoogle Scholar
  12. Bhattacharya KF, Nouri S, Olanow CW, Yahr MD, Kaufmann H (2003) Selegiline in the treatment of Parkinson’s disease: its impact on orthostatic hypotension. Parkinsonism Relat Disord 9(4):221–224CrossRefPubMedGoogle Scholar
  13. Birkmayer W, Riederer P, Youdim MB, Linauer W (1975) The potentiation of the anti akinetic effect after l-DOPA treatment by an inhibitor of MAO-B, deprenil. J Neural Transm 36(3–4):303–326CrossRefPubMedGoogle Scholar
  14. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D et al (2014) Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord 29(10):1273–1280CrossRefPubMedGoogle Scholar
  15. Brooks DJ (2008) Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: implications from a clinical and patient perspective. Neuropsychiatr Dis Treat 4(1):39–47CrossRefPubMedPubMedCentralGoogle Scholar
  16. Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55(3):981–988CrossRefPubMedGoogle Scholar
  17. Caccia C, Maj R, Calabresi M, Maestroni S, Faravelli L, Curatolo L et al (2006) Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology 67(7 Suppl 2):S18–S23CrossRefPubMedGoogle Scholar
  18. Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57(1):2–12PubMedGoogle Scholar
  19. Cenci MA, Ohlin KE, Odin P (2011) Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 10(6):670–684CrossRefPubMedGoogle Scholar
  20. Cereda E, Cilia R, Canesi M, Tesei S, Mariani CB, Zecchinelli AL et al (2017) Efficacy of rasagiline and selegiline in Parkinson’s disease: a head-to-head 3-year retrospective case-control study. J Neurol 264(6):1254–1263CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chang Y, Wang LB, Li D, Lei K, Liu SY (2017) Efficacy of rasagiline for the treatment of Parkinson’s disease: an updated meta-analysis. Ann Med 49(5):421–434CrossRefPubMedGoogle Scholar
  22. Chen JJ, Swope DM, Dashtipour K (2007) Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther 29(9):1825–1849CrossRefPubMedGoogle Scholar
  23. Churchyard A, Mathias CJ, Boonkongchuen P, Lees AJ (1997) Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson’s disease. J Neurol Neurosurg Psychiatry 63(2):228–234CrossRefPubMedPubMedCentralGoogle Scholar
  24. Churchyard A, Mathias CJ, Lees AJ (1999) Selegiline-induced postural hypotension in Parkinson’s disease: a longitudinal study on the effects of drug withdrawal. Mov Disord 14(2):246–251CrossRefPubMedGoogle Scholar
  25. Culpepper L, Kovalick LJ (2008) A review of the literature on the selegiline transdermal system: an effective and well-tolerated monoamine oxidase inhibitor for the treatment of depression. Prim Care Companion J Clin Psychiatry 10(1):25–30CrossRefPubMedPubMedCentralGoogle Scholar
  26. Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121(1):89–99CrossRefPubMedGoogle Scholar
  27. deMarcaida JA, Schwid SR, White WB, Blindauer K, Fahn S, Kieburtz K et al (2006) Effects of tyramine administration in Parkinson’s disease patients treated with selective MAO-B inhibitor rasagiline. Mov Disord 21(10):1716–1721CrossRefPubMedGoogle Scholar
  28. Denney RM, Denney CB (1985) An update on the identity crisis of monoamine oxidase: new and old evidence for the independence of MAO A and B. Pharmacol Ther 30(3):227–258CrossRefPubMedGoogle Scholar
  29. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I et al (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14(1):135–143CrossRefPubMedGoogle Scholar
  30. Edmondson DE, Binda C (2018) Monoamine Oxidases. Sub Cell Biochem 87:117–139CrossRefGoogle Scholar
  31. Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48(20):4220–4230CrossRefPubMedPubMedCentralGoogle Scholar
  32. Eigeldinger-Berthou S, Meier C, Zulliger R, Lecaude S, Enzmann V, Sarra GM (2012) Rasagiline interferes with neurodegeneration in the Prph2/rds mouse. Retina 32(3):617–628CrossRefPubMedGoogle Scholar
  33. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56(3):331–349CrossRefPubMedGoogle Scholar
  34. Ekblom J, Jossan SS, Bergstrom M, Oreland L, Walum E, Aquilonius SM (1993) Monoamine oxidase-B in astrocytes. Glia 8(2):122–132CrossRefPubMedGoogle Scholar
  35. Ferreira JJ, Rocha JF, Falcao A, Santos A, Pinto R, Nunes T et al (2015) Effect of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor fluctuations in patients with Parkinson’s disease. Eur J Neurol 22(5):815–825, e856CrossRefPubMedGoogle Scholar
  36. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P et al (2016) Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol 15(2):154–165CrossRefPubMedGoogle Scholar
  37. Ferreira JJ, Lees AJ, Poewe W, Rascol O, Rocha JF, Keller B et al (2018) Effectiveness of opicapone and switching from entacapone in fluctuating Parkinson disease. Neurology 90(21):e1849–e1857CrossRefPubMedGoogle Scholar
  38. Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143(2):133–152CrossRefPubMedGoogle Scholar
  39. Finberg JP, Gillman PK (2011) Selective inhibitors of monoamine oxidase type B and the “cheese effect”. In: Youdim MB, Riederer P (eds) International review of neurobiology, vol 100. Academic Press, Burlington, pp 169–190Google Scholar
  40. Finberg JP, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:340CrossRefPubMedPubMedCentralGoogle Scholar
  41. Finberg JP, Tenne M (1982) Relationship between tyramine potentiation and selective inhibition of monoamine oxidase types A and B in the rat vas deferens. Br J Pharmacol 77(1):13–21CrossRefPubMedPubMedCentralGoogle Scholar
  42. Finberg JP, Youdim MB (2002) Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours. Neuropharmacology 43(7):1110–1118CrossRefPubMedGoogle Scholar
  43. Finberg JP, Wang J, Goldstein DS, Kopin IJ, Bankiewicz KS (1995) Influence of selective inhibition of monoamine oxidase A or B on striatal metabolism of l-DOPA in hemiparkinsonian rats. J Neurochem 65(3):1213–1220CrossRefPubMedGoogle Scholar
  44. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K et al (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266CrossRefPubMedGoogle Scholar
  45. Frakey LL, Friedman JH (2017) Cognitive effects of rasagiline in mild-to-moderate stage Parkinson’s disease without dementia. J Neuropsychiatry Clin Neurosci 29(1):22–25CrossRefPubMedGoogle Scholar
  46. Gallagher IM, Clow A, Glover V (1998) Long-term administration of (−)-deprenyl increases mortality in male Wistar rats. J Neural Transm Suppl 52:315–320CrossRefPubMedGoogle Scholar
  47. Gerlach M, van den Buuse M, Blaha C, Bremen D, Riederer P (2004) Entacapone increases and prolongs the central effects of l-DOPA in the 6-hydroxydopamine-lesioned rat. Naunyn Schmiedebergs Arch Pharmacol 370(5):388–394CrossRefPubMedGoogle Scholar
  48. Giladi N, Asgharnejad M, Bauer L, Grieger F, Boroojerdi B (2016) Rotigotine in combination with the MAO-B inhibitor selegiline in early Parkinson’s disease: a post hoc analysis. J Parkinson’s Dis 6(2):401–411CrossRefGoogle Scholar
  49. Gillman PK (2011) Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol 31(1):66–74CrossRefPubMedGoogle Scholar
  50. Glezer S, Finberg JP (2003) Pharmacological comparison between the actions of methamphetamine and 1-aminoindan stereoisomers on sympathetic nervous function in rat vas deferens. Eur J Pharmacol 472(3):173–177CrossRefPubMedGoogle Scholar
  51. Goldberg JF, Thase ME (2013) Monoamine oxidase inhibitors revisited: what you should know. J Clin Psychiatry 74(2):189–191CrossRefPubMedGoogle Scholar
  52. Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R et al (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126(5):591–603CrossRefPubMedPubMedCentralGoogle Scholar
  53. Goldstein DS, Kopin IJ, Sharabi Y (2014) Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 144(3):268–282CrossRefPubMedPubMedCentralGoogle Scholar
  54. Goren T, Adar L, Sasson N, Weiss YM (2010) Clinical pharmacology tyramine challenge study to determine the selectivity of the monoamine oxidase type B (MAO-B) inhibitor rasagiline. J Clin Pharmacol 50(12):1420–1428CrossRefPubMedGoogle Scholar
  55. Guay DR (2006) Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson’s disease. Am J Geriatr Pharmacother 4(4):330–346CrossRefPubMedGoogle Scholar
  56. Jankovic J, Berkovich E, Eyal E, Tolosa E (2014) Symptomatic efficacy of rasagiline monotherapy in early Parkinson’s disease: post-hoc analyses from the ADAGIO trial. Parkinsonism Relat Disord 20(6):640–643CrossRefPubMedGoogle Scholar
  57. Jarrott B, Iversen LL (1971) Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens. J Neurochem 18(1):1–6CrossRefPubMedGoogle Scholar
  58. Jenner P, Langston JW (2011) Explaining ADAGIO: a critical review of the biological basis for the clinical effects of rasagiline. Mov Disord 26(13):2316–2323CrossRefPubMedGoogle Scholar
  59. Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17(7):1285–1297CrossRefPubMedGoogle Scholar
  60. Kaakkola S, Wurtman RJ (1993) Effects of catechol-O-methyltransferase inhibitors and l-3,4-dihydroxyphenylalanine with or without carbidopa on extracellular dopamine in rat striatum. J Neurochem 60(1):137–144CrossRefPubMedGoogle Scholar
  61. Katsaiti I, Nixon J (2018) Are there benefits in adding catechol-O methyltransferase inhibitors in the pharmacotherapy of Parkinson’s disease patients? A systematic review. J Parkinson’s Dis 8(2):217–231CrossRefGoogle Scholar
  62. Kieburtz K (2009) ADAGIO misses a beat? Lancet Neurol 8(12):1081–1082CrossRefPubMedGoogle Scholar
  63. Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (−)deprenyl. Mech Ageing Dev 46(1–3):237–262CrossRefPubMedGoogle Scholar
  64. Knoll J (1992) (−)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. J Am Geriatr Soc 40(8):839–847CrossRefPubMedGoogle Scholar
  65. Knoll J (1998) (−)Deprenyl (selegiline), a catecholaminergic activity enhancer (CAE) substance acting in the brain. Pharmacol Toxicol 82(2):57–66CrossRefPubMedGoogle Scholar
  66. Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5:393–408PubMedGoogle Scholar
  67. Knoll J, Miklya I (2016) Longevity study with low doses of selegiline/(−)-deprenyl and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP). Life Sci 167:32–38CrossRefPubMedGoogle Scholar
  68. Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethylpropinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 155(1):154–164PubMedGoogle Scholar
  69. Knoll J, Miklya I, Knoll B (2002) Stimulation of the catecholaminergic and serotoninergic neurons in the rat brain by R-(−)-1-(benzofuran-2-yl)-2-propylaminopentane, (−)-BPAP. Life Sci 71(18):2137–2144CrossRefPubMedGoogle Scholar
  70. Kumagae Y, Matsui Y, Iwata N (1991) Deamination of norepinephrine, dopamine, and serotonin by type A monoamine oxidase in discrete regions of the rat brain and inhibition by RS-8359. Jpn J Pharmacol 55(1):121–128CrossRefPubMedGoogle Scholar
  71. Kunugi H, Nanko S, Ueki A, Otsuka E, Hattori M, Hoda F et al (1997) High and low activity alleles of catechol-O-methyltransferase gene: ethnic difference and possible association with Parkinson’s disease. Neurosci Lett 221(2–3):202–204CrossRefPubMedGoogle Scholar
  72. Kuoppamaki M, Korpela K, Marttila R, Kaasinen V, Hartikainen P, Lyytinen J et al (2009) Comparison of pharmacokinetic profile of levodopa throughout the day between levodopa/carbidopa/entacapone and levodopa/carbidopa when administered four or five times daily. Eur J Clin Pharmacol 65(5):443–455CrossRefPubMedGoogle Scholar
  73. Kuoppamaki M, Leinonen M, Poewe W (2015) Efficacy and safety of entacapone in levodopa/carbidopa versus levodopa/benserazide treated Parkinson’s disease patients with wearing-off. J Neural Transm (Vienna) 122(12):1709–1714CrossRefGoogle Scholar
  74. Lader MH, Sakalis G, Tansella M (1970) Interactions between sympathomimetic amines and a new monoamine oxidase inhibitor. Psychopharmacologia 18(1):118–123CrossRefPubMedGoogle Scholar
  75. Lamensdorf I, Youdim MB, Finberg JP (1996) Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67(4):1532–1539CrossRefPubMedGoogle Scholar
  76. Lang AE, Espay AJ (2018) Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov Disord 33(5):660–677CrossRefPubMedGoogle Scholar
  77. Laux G (1993) Do MAO-B inhibitors have any role in the treatment of depression. In: Szelenyi I (ed) Inhibition of monoamine oxidase B. Birkhauser Verlag. Basel, pp 319–326CrossRefGoogle Scholar
  78. Lei D, Shao Z, Zhou X, Yuan H (2018) Synergistic neuroprotective effect of rasagiline and idebenone against retinal ischemia-reperfusion injury via the Lin28-let-7-Dicer pathway. Oncotarget 9(15):12137–12153CrossRefPubMedPubMedCentralGoogle Scholar
  79. Levitt P, Pintar JE, Breakefield XO (1982) Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 79(20):6385–6389CrossRefPubMedGoogle Scholar
  80. Levkovitch-Verbin H, Vander S, Melamed S (2011) Rasagiline-induced delay of retinal ganglion cell death in experimental glaucoma in rats. J Glaucoma 20(5):273–277CrossRefPubMedGoogle Scholar
  81. Lin CH, Fan JY, Lin HI, Chang CW, Wu YR (2018) Catechol-O-methyltransferase (COMT) genetic variants are associated with cognitive decline in patients with Parkinson’s disease. Parkinsonism Relat Disord 50:48–53CrossRefPubMedGoogle Scholar
  82. Lotufo-Neto F, Trivedi M, Thase ME (1999) Meta-analysis of the reversible inhibitors of monoamine oxidase type A moclobemide and brofaromine for the treatment of depression. Neuropsychopharmacology 20(3):226–247CrossRefPubMedGoogle Scholar
  83. Mandel SA, Sagi Y, Amit T (2007) Rasagiline promotes regeneration of substantia nigra dopaminergic neurons in post-MPTP-induced Parkinsonism via activation of tyrosine kinase receptor signaling pathway. Neurochem Res 32(10):1694–1699CrossRefPubMedGoogle Scholar
  84. Mann J, Gershon S (1980) l-Deprenyl, a selective monoamine oxidase type-B inhibitor in endogenous depression. Life Sci 26(11):877–882CrossRefPubMedGoogle Scholar
  85. Mann JJ, Aarons SF, Wilner PJ, Keilp JG, Sweeney JA, Pearlstein T et al (1989) A controlled study of the antidepressant efficacy and side effects of (−)-deprenyl. A selective monoamine oxidase inhibitor. Arch Gen Psychiatry 46(1):45–50CrossRefPubMedGoogle Scholar
  86. Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628PubMedGoogle Scholar
  87. Mannisto PT, Tuomainen P, Tuominen RK (1992) Different in vivo properties of three new inhibitors of catechol O-methyltransferase in the rat. Br J Pharmacol 105(3):569–574CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mannisto PT, Lang A, Rauhala P, Vasar E (1995) Beneficial effects of co-administration of catechol-O-methyltransferase inhibitors and l-dihydroxyphenylalanine in rat models of depression. Eur J Pharmacol 274(1–3):229–233CrossRefPubMedGoogle Scholar
  89. Marin C, Aguilar E, Bonastre M, Tolosa E, Obeso JA (2005) Early administration of entacapone prevents levodopa-induced motor fluctuations in hemiparkinsonian rats. Exp Neurol 192(1):184–193CrossRefPubMedGoogle Scholar
  90. Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 78(4):727–735CrossRefPubMedGoogle Scholar
  91. Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24(5):675–682CrossRefPubMedGoogle Scholar
  92. Mendis N, Pare CM, Sandler M, Glover V, Stern GM (1981) Is the failure of (−)deprenyl, a selective monoamine oxidase B inhibitor, to alleviate depression related to freedom from the cheese effect? Psychopharmacology 73(1):87–90CrossRefPubMedGoogle Scholar
  93. Montastruc JL, Chaumerliac C, Desboeuf K, Manika M, Bagheri H, Rascol O et al (2000) Adverse drug reactions to selegiline: a review of the French pharmacovigilance database. Clin Neuropharmacol 23(5):271–275CrossRefPubMedGoogle Scholar
  94. Moreau JL, Borgulya J, Jenck F, Martin JR (1994) Tolcapone: a potential new antidepressant detected in a novel animal model of depression. Behav Pharmacol 5(3):344–350CrossRefPubMedGoogle Scholar
  95. Mosnaim AD, Hudzik T, Wolf ME (2015) Behavioral effects of beta-phenylethylamine and various monomethylated and monohalogenated analogs in mice are mediated by catecholaminergic mechanisms. Am J Ther 22(6):412–422CrossRefPubMedGoogle Scholar
  96. Mostile G, Nicoletti A, Dibilio V, Luca A, Raciti L, Sciacca G et al (2017) Switching l-DOPA therapy from pulsatile to pulse administration reduces motor complications in Parkinson’s disease. Clin Neuropharmacol 40(1):6–10PubMedGoogle Scholar
  97. Muller T (2015) Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 75(2):157–174CrossRefPubMedGoogle Scholar
  98. Muller T, Hoffmann JA, Dimpfel W, Oehlwein C (2013) Switch from selegiline to rasagiline is beneficial in patients with Parkinson’s disease. J Neural Transm (Vienna) 120(5):761–765CrossRefGoogle Scholar
  99. Muller T, Riederer P, Grunblatt E (2017) Determination of monoamine oxidase A and B activity in long-term treated patients with Parkinson disease. Clin Neuropharmacol 40(5):208–211CrossRefPubMedGoogle Scholar
  100. Murata M, Hasegawa K, Kanazawa I, Japan Zonisamide on PDSG (2007) Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study. Neurology 68(1):45–50CrossRefPubMedGoogle Scholar
  101. Murata M, Odawara T, Hasegawa K, Iiyama S, Nakamura M, Tagawa M et al (2018) Adjunct zonisamide to levodopa for DLB parkinsonism: a randomized double-blind phase 2 study. Neurology 90(8):e664–e672CrossRefPubMedPubMedCentralGoogle Scholar
  102. Navailles S, Bioulac B, Gross C, De Deurwaerdere P (2010) Serotonergic neurons mediate ectopic release of dopamine induced by l-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis 38(1):136–143CrossRefPubMedGoogle Scholar
  103. Navailles S, Bioulac B, Gross C, De Deurwaerdere P (2011) Chronic l-DOPA therapy alters central serotonergic function and l-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590CrossRefPubMedGoogle Scholar
  104. O’Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. Naunyn Schmiedebergs Arch Pharmacol 322(3):198–202CrossRefPubMedGoogle Scholar
  105. Olanow CW (2006) Rationale for considering that propargylamines might be neuroprotective in Parkinson’s disease. Neurology 66(10 Suppl 4):S69–S79CrossRefPubMedGoogle Scholar
  106. Olanow CW, Myllyla VV, Sotaniemi KA, Larsen JP, Palhagen S, Przuntek H et al (1998) Effect of selegiline on mortality in patients with Parkinson’s disease: a meta-analysis. Neurology 51(3):825–830CrossRefPubMedGoogle Scholar
  107. Olanow CW, Schapira AH, LeWitt PA, Kieburtz K, Sauer D, Olivieri G et al (2006) TCH346 as a neuroprotective drug in Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 5(12):1013–1020CrossRefPubMedGoogle Scholar
  108. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A et al (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361(13):1268–1278CrossRefPubMedGoogle Scholar
  109. Olanow CW, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M et al (2013) Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord 28(8):1064–1071CrossRefGoogle Scholar
  110. Olanow CW, Kieburtz K, Leinonen M, Elmer L, Giladi N, Hauser RA et al (2017) A randomized trial of a low-dose Rasagiline and Pramipexole combination (P2B001) in early Parkinson’s disease. Mov Disord 32(5):783–789CrossRefPubMedGoogle Scholar
  111. Petit GH, Berkovich E, Hickery M, Kallunki P, Fog K, Fitzer-Attas C et al (2013) Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson’s disease. PLoS One 8(4):e60691CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pursiainen V, Korpelainen TJ, Haapaniemi HT, Sotaniemi AK, Myllyla VV (2007) Selegiline and blood pressure in patients with Parkinson’s disease. Acta Neurol Scand 115(2):104–108CrossRefPubMedGoogle Scholar
  113. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F et al (2005) Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 365(9463):947–954CrossRefPubMedGoogle Scholar
  114. Rascol O, Fitzer-Attas CJ, Hauser R, Jankovic J, Lang A, Langston JW et al (2011) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol 10(5):415–423CrossRefPubMedGoogle Scholar
  115. Rascol O, Hauser RA, Stocchi F, Fitzer-Attas CJ, Sidi Y, Abler V et al (2016) Long-term effects of rasagiline and the natural history of treated Parkinson’s disease. Mov Disord 31(10):1489–1496CrossRefPubMedGoogle Scholar
  116. Reilly DK, Rivera-Calimlim L, Van Dyke D (1980) Catechol-O-methyltransferase activity: a determinant of levodopa response. Clin Pharmacol Ther 28(2):278–286CrossRefPubMedGoogle Scholar
  117. Reynolds GP, Riederer P, Sandler M, Jellinger K, Seemann D (1978) Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)deprenyl administration. J Neural Transm 43(3–4):271–277CrossRefPubMedGoogle Scholar
  118. Riederer P, Muller T (2018) Monoamine oxidase-B inhibitors in the treatment of Parkinson’s disease: clinical-pharmacological aspects. J Neural Transm (Vienna).  https://doi.org/10.1007/s00702-018-1876-2 CrossRefGoogle Scholar
  119. Rocha JF, Almeida L, Falcao A, Palma PN, Loureiro AI, Pinto R et al (2013) Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects. Br J Clin Pharmacol 76(5):763–775CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rocha JF, Ferreira JJ, Falcao A, Santos A, Pinto R, Nunes T et al (2016) Effect of 3 single-dose regimens of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor response in patients with parkinson disease. Clin Pharmacol Drug Dev 5(3):232–240CrossRefPubMedGoogle Scholar
  121. Rodrigues FB, Ferreira JJ (2017) Opicapone for the treatment of Parkinson’s disease. Expert Opin Pharmacother 18(4):445–453CrossRefPubMedGoogle Scholar
  122. Sader-Mazbar O, Loboda Y, Rabey MJ, Finberg JP (2013) Increased l-DOPA-derived dopamine following selective MAO-A or -B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation. Br J Pharmacol 170(5):999–1013CrossRefPubMedPubMedCentralGoogle Scholar
  123. Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC et al (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70(3):755–774CrossRefPubMedGoogle Scholar
  124. Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N (1997) Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging 18(5):497–507CrossRefPubMedGoogle Scholar
  125. Schrempf W, Fauser M, Wienecke M, Brown S, Maass A, Ossig C et al (2018) Rasagiline improves polysomnographic sleep parameters in patients with Parkinson’s disease: a double-blind, baseline-controlled trial. Eur J Neurol 25(4):672–679CrossRefPubMedGoogle Scholar
  126. Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315(1):19–30CrossRefPubMedGoogle Scholar
  127. Shoulson I, Oakes D, Fahn S, Lang A, Langston JW, LeWitt P et al (2002) Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol 51(5):604–612CrossRefPubMedGoogle Scholar
  128. Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W et al (2005) Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord 20(3):306–314CrossRefPubMedGoogle Scholar
  129. Solla P, Cannas A, Marrosu F, Marrosu MG (2010) Therapeutic interventions and adjustments in the management of Parkinson disease: role of combined carbidopa/levodopa/entacapone (Stalevo). Neuropsychiatr Dis Treat 6:483–490CrossRefPubMedPubMedCentralGoogle Scholar
  130. Sonsalla PK, Wong LY, Winnik B, Buckley B (2010) The antiepileptic drug zonisamide inhibits MAO-B and attenuates MPTP toxicity in mice: clinical relevance. Exp Neurol 221(2):329–334CrossRefPubMedGoogle Scholar
  131. Stocchi F, Rabey JM (2011) Effect of rasagiline as adjunct therapy to levodopa on severity of OFF in Parkinson’s disease. Eur J Neurol 18(12):1373–1378CrossRefPubMedGoogle Scholar
  132. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E et al (2010) Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol 68(1):18–27CrossRefPubMedGoogle Scholar
  133. Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V et al (2012) A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord 27(1):106–112CrossRefPubMedGoogle Scholar
  134. Szoko E, Tabi T, Riederer P, Vecsei L, Magyar K (2018) Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna).  https://doi.org/10.1007/s00702-018-1853-9 CrossRefGoogle Scholar
  135. Tatton W, Chalmers-Redman G RME (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (−)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47(Supplement 3):S171–S183CrossRefPubMedGoogle Scholar
  136. Thebault JJ, Guillaume M, Levy R (2004) Tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline: a potent, selective, and irreversible monoamine oxidase type B inhibitor. Pharmacotherapy 24(10):1295–1305CrossRefPubMedGoogle Scholar
  137. Tipton KF (2018) 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna).  https://doi.org/10.1007/s00702-018-1881-5 CrossRefGoogle Scholar
  138. Vaya J, Aluf Y, Finberg JPM (2012) Oxidative stress in Parkinson’s disease. In: Gadoth N, Gobel HH (eds) Oxidative stress and free radical damage in neurology. Springer, New York, pp 191–224Google Scholar
  139. Wachtel SR, Abercrombie ED (1994) l-3,4-Dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors. J Neurochem 63(1):108–117CrossRefPubMedGoogle Scholar
  140. Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MB (2005) Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann N Y Acad Sci 1053:348–355CrossRefPubMedGoogle Scholar
  141. Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230(4722):181–183CrossRefPubMedGoogle Scholar
  142. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25(2):439–456CrossRefPubMedGoogle Scholar
  143. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T et al (2001) Human l-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514(2):291–302CrossRefPubMedGoogle Scholar
  144. Youdim MB, Gross A, Finberg JP (2001a) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132(2):500–506CrossRefPubMedPubMedCentralGoogle Scholar
  145. Youdim MB, Wadia A, Tatton W, Weinstock M (2001b) The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 939:450–458CrossRefPubMedGoogle Scholar
  146. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309CrossRefPubMedGoogle Scholar
  147. Yu PH, Hertz L (1983) Type A and B monoamine oxidase in glial cells in long-term culture. Prog Neuropsychopharmacol Biol Psychiatry 7(4–6):687–690CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuroscience GroupRappaport Faculty of MedicineHaifaIsrael

Personalised recommendations