Journal of Neural Transmission

, Volume 126, Issue 4, pp 367–375 | Cite as

Tyrosine-hydroxylase immunoreactivity in the mouse transparent brain and adrenal glands

  • David Godefroy
  • William RostèneEmail author
  • Youssef Anouar
  • Annabelle Reaux-Le Goazigo
Neurology and Preclinical Neurological Studies - Review Article


Working on catecholamine systems for years, the neuropharmacologist Arvid Carlsson has made a number of important and pioneering discoveries, which have highlighted the key role of these neuronal and peripheral neurotransmitters in brain functions and adrenal regulations. Since then, major advances have been made concerning the distribution of the catecholaminergic systems in particular by studying their rate-limiting enzyme, tyrosine hydroxylase (TH). Recently new methods of tissue transparency coupled with in toto immununostaining and three-dimensional (3D) imaging technologies allow to precisely map TH immunoreactive pathways in the mouse brain and adrenal glands. High magnification images and movies obtained with combined technologies (iDISCO+ and light-sheet microscopy) are presented in this review dedicated to the pioneer work of Arvid Carlsson and his collaborators.


Tyrosine hydroxylase Dopamine mapping Mouse brain Adrenals Clearing iDISCO+ 



The present study was supported by Sorbonne and Normandie Universities, the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Association Française d’Epargne et de Retraite (AFER). Images were obtained on PRIMACEN (, the Cell Imaging Platform of Normandy, IRIB, Faculty of Sciences, University of Rouen, 76821 Mont-Saint-Aignan.

Supplementary material

702_2018_1925_MOESM1_ESM.avi (94.5 mb)
Supplementary material 1 Movie 1 3D movie of TH distribution in P5 mouse brain. Attribution of false colors and volume “rendering” for dopaminergic (blue, in the striatum and mesencephalic regions), various catecholamines (green, in the hypothalamus), noradrenergic (white, in the olfactory bulbs and yellow, in the pons), noradrenergic/adrenergic neurons (pink, in the brainstem). The cerebellum is in orange (AVI 96719 KB)

Supplementary material 2 Movie 2 3D movie of the localization of TH positive chromaffin cells in the adrenal medulla of adult mice (MP4 28586 KB)


  1. Ait-Ali D, Turquier V, Tanguy Y, Thouennon E, Ghzili H, Mounien L, Derambure C, Jegou S, Salier JP, Vaudry H, Eiden LE, Anouar Y (2008) Tumor necrosis factor (TNF)-alpha persistently activates nuclear factor-kappaB signaling through the type 2 TNF receptor in chromaffin cells: implications for long-term regulation of neuropeptide gene expression in inflammation. Endocrinology 149:2840–2852. CrossRefGoogle Scholar
  2. Anden NE, Carlsson A, Dahlström A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530CrossRefGoogle Scholar
  3. Anden NE, Dahlström A, Fuxe K, Larsson K (1965) Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci 4:1275–1279CrossRefGoogle Scholar
  4. Azaripour A, Lagerweij T, Scharfbillig C, Jadczak AE, Willershausen B, Van Noorden CJ (2016) A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem 51:9–23. CrossRefGoogle Scholar
  5. Balan IS, Ugrumov MV, Calas A, Mailly P, Krieger M, Thibault J (2000) Tyrosine hydroxylase-expressing and/or aromatic l-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 425:167–176CrossRefGoogle Scholar
  6. Barbeau A (1969) l-Dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59–68Google Scholar
  7. Belle M, Godefroy D, Dominici C, Heitz-Marchaland C, Zelina P, Hellal F, Bradke F, Chedotal A (2014) A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep 9:1191–1201. CrossRefGoogle Scholar
  8. Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, Chedotal A (2017) Tridimensional visualization and analysis of early human development. Cell 169:161–173. CrossRefGoogle Scholar
  9. Bertler A, Rosengren E (1966) Possible role of brain dopamine. Pharmacol Rev 18:769–773Google Scholar
  10. Bertler A, Falck B, Gottfries CG, Ljunggren L, Rosengren E (1964) Soeme observations on adrenergic connections between mesencephalon and cerebral hemispheres. Acta Pharmacol Toxicol (Copenh) 21:283–289CrossRefGoogle Scholar
  11. Birkmayer W, Hornykiewicz O (1961) The l-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 73:787–788Google Scholar
  12. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202. CrossRefGoogle Scholar
  13. Blaschko H (1939) The specific action of l-dopa decarboxylase. J Physiol (Lond) 96:50–51Google Scholar
  14. Bornstein SR, Gonzalez-Hernandez JA, Ehrhart-Bornstein M, Alder G, Scherbaum WA (1994) Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab 78(1):225–232Google Scholar
  15. Bunn SJ, Ait-Ali D, Eiden LE (2012) Immune-neuroendocrine integration at the adrenal gland: cytokine control of the adrenomedullary transcriptome. J Mol Neurosci 48:413–419. CrossRefGoogle Scholar
  16. Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493Google Scholar
  17. Carlsson A (1971) Basic concepts underlying recent developments in the field of Parkinson’s disease. Contemp Neurol Ser 8:1–31Google Scholar
  18. Carlsson A (1993) On the neuronal circuitries and neurotransmitters involved in the control of locomotor activity. J Neural Transm Suppl 40:1–12CrossRefGoogle Scholar
  19. Carlsson A (2001) A paradigm shift in brain research. Science 294:1021–1024. CrossRefGoogle Scholar
  20. Carlsson A, Hillarp NA (1956) Release of adenosine triphosphate along with adrenaline and noradrenaline following stimulation of the adrenal medulla. Acta Physiol Scand 37:235–239. CrossRefGoogle Scholar
  21. Carlsson A, Hillarp NA, Hökfelt B (1957) The concomitant release of adenosine triphosphate and catechol amines from the adrenal medulla. J Biol Chem 227:243–252Google Scholar
  22. Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471CrossRefGoogle Scholar
  23. Carlsson A, Falck B, Hillarp NA, Thieme G, Torp A (1961) A new histochemical method for visualization of tissue catechol amines. Med Exp Int J Exp Med 4:123–125Google Scholar
  24. Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56:1–28CrossRefGoogle Scholar
  25. Cavadas C, Grand D, Mosimann F, Cotrim MD, Ribeiro F, Brunner CA, Grouzmann HR, E (2003) Angiotensin II mediates catecholamine and neuropeptide Y secretion in human adrenal chromaffin cells through the AT1 receptor. Regul Pept 111:61–65CrossRefGoogle Scholar
  26. Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399CrossRefGoogle Scholar
  27. Dobosz M, Ntziachristos V, Scheuer W, Strobel S (2014) Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16:1–13CrossRefGoogle Scholar
  28. Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgansberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336. CrossRefGoogle Scholar
  29. Ehrhart-Bornstein M, Bornstein SR (2008) Cross-talk between adrenal medulla and adrenal cortex in stress. Ann N Y Acad Sci 1148:112–117. CrossRefGoogle Scholar
  30. Epp JR, Niibori Y, Hsiang L, Mercaldo HL, Deisseroth V, Josselyn K, Frankland SA, P.W (2015) Optimization of CLARITY for clearing whole-brain and other intact organs. eNeuro. Google Scholar
  31. Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, Hellal F, Bradke F, Sheng M, Dodt HU (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995. CrossRefGoogle Scholar
  32. Falck B, Torp A (1962) New evidence for the localization of noradrenalin in the adrenergic nerve terminals. Med Exp Int J Exp Med 6:169–172Google Scholar
  33. Falck B, Hillarp NA, Thieme G, Torp A (1982) Fluorescence of catechol amines and related compounds condensed with formaldehyde. Brain Res Bull 9:xi–xvCrossRefGoogle Scholar
  34. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  35. Gallo-Payet N, Pothier P, Isler H (1987) On the presence of chromaffin cells in the adrenal cortex: their possible role in adrenocortical function. Biochem Cell Biol 65(6):588–592CrossRefGoogle Scholar
  36. Godefroy D, Dominici C, Hardin-Pouzet H, Anouar Y, Melik-Parsadaniantz S, Rostene W, Reaux-Le Goazigo A (2017) Three-dimensional distribution of tyrosine hydroxylase, vasopressin and oxytocin neurones in the transparent postnatal mouse brain. J Neuroendocrinol. Google Scholar
  37. Hillarp NA, Nilson B (1954) The structure of the adrenaline and noradrenaline containing granules in the adrenal medullary cells with reference to the storage and release of the sympathomimetic amines. Acta Physiol Scand Suppl 31:79–107Google Scholar
  38. Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54:427–453Google Scholar
  39. Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1977) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain II. Tyrosine hydroxylase in the telencephalon. Med Biol 55:21–40Google Scholar
  40. Hökfelt T, Everitt B, Meister B, Melander T, Schalling M, Johansson O, Lundberg JM, Hulting AL, Werner S, Cuello C et al (1986) Neurons with multiple messengers with special reference in neuroendocrine systems. Recent Prog Horm Res 42:1–70Google Scholar
  41. Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Hökfelt T (ed) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 277–379Google Scholar
  42. Klingberg A, Hasenberg A, Ludwig-Portugall I, Medyukhina A, Mann L, Brenzel A, Engel DR, Figge MT, Kurts C, Gunzer M (2017) Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J Am Soc Nephrol 28:452–459. CrossRefGoogle Scholar
  43. Kramer EE, Steadman PE, Epp JR, Frankland PW, Josselyn SA (2018) Assessing individual neuronal activity across the intact brain: using hybridization chain reaction (HCR) to detect arc mRNA localized to the nucleus in volumes of cleared brain tissue. Curr Protoc Neurosci 84:e49. CrossRefGoogle Scholar
  44. Kvetnansky R, Weise VK, Kopin IJ (1970) Elevation of adrenal tyrosine hydroxylase and phenylethanolamine-N-methyl transferase by repeated immobilization of rats. Endocrinology 87:744–749. CrossRefGoogle Scholar
  45. Launay PS, Godefroy D, Khabou H, Rostene W, Sahel JA, Baudouin C, Parsadaniantz M, Goazigo SReaux-Le, A (2015) Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Exp Eye Res 139:136–143. CrossRefGoogle Scholar
  46. Lindvall O, Björklund A, Skagerberg G (1984) Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res 306:19–30CrossRefGoogle Scholar
  47. Markey KA, Kondo H, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17:79–85Google Scholar
  48. Moore AM, Lucas KA, Goodman RL, Coolen LM, Lehman MN (2018) Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Sci Rep 8:2242. CrossRefGoogle Scholar
  49. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917Google Scholar
  50. Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40Google Scholar
  51. Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, Plesnila N, Dichgans M, Hellal F, Erturk A (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867. CrossRefGoogle Scholar
  52. Qi Y, Zhang XJ, Renier N, Wu Z, Atkin T, Sun Z, Ozair MZ, Tchieu J, Zimmer B, Fattahi F, Ganat Y, Azevedo R, Zeltner N, Brivanlou AH, Karayiorgou M, Gogos J, Tomishima M, Tessier-Lavigne M, Shi SH, Studer L (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35:154–163. CrossRefGoogle Scholar
  53. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910. CrossRefGoogle Scholar
  54. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, Wang VX, Tang CY, Olsen O, Dulac C, Osten P, Tessier-Lavigne M (2016) Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165:1789–1802. CrossRefGoogle Scholar
  55. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162:246–257. CrossRefGoogle Scholar
  56. Rosmaninho-Salgado J, Araujo IM, Alvaro AR, Mendes AF, Ferreira L, Grouzmann E, Mota A, Duarte EP, Cavadas C (2009) Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukin-1beta: role of neuropeptide Y and nitric oxide. J Neurochem 109:911–922. CrossRefGoogle Scholar
  57. Senthilkumaran M, Johnson ME, Bobrovskaya L (2016) The effects of insulin-induced hypoglycaemia on tyrosine hydroxylase phosphorylation in rat brain and adrenal gland. Neurochem Res 41:1612–1624. CrossRefGoogle Scholar
  58. Seroogy K, Tsuruo Y, Hökfelt T, Walsh J, Fahrenkrug J, Emson PC, Goldstein M (1988) Further analysis of presence of peptides in dopamine neurons. Cholecystokinin, peptide histidine-isoleucine/vasoactive intestinal polypeptide and substance P in rat supramammillary region and mesencephalon. Exp Brain Res 72:523–534CrossRefGoogle Scholar
  59. Simmons DM, Swanson LW (2008) High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neurosci Lett 438:85–89. CrossRefGoogle Scholar
  60. Sladek JR, Björklund A (1982) Preface. Brain Res Bull 9:9–10Google Scholar
  61. Soderblom C, Lee DH, Dawood A, Carballosa M, Jimena Santamaria A, Benavides FD, Jergova S, Grumbles RM, Thomas CK, Park KK, Guest JD, Lemmon VP, Lee JK, Tsoulfas P (2015) 3D imaging of axons in transparent spinal cords from rodents and nonhuman primates. eNeuro. Google Scholar
  62. Sotelo C, Javoy F, Agid Y, Glowinski J (1973) Injection of 6-hydroxydopamine in the substantia nigra of the rat. I. Morphological study. Brain Res 58:269–290CrossRefGoogle Scholar
  63. Tamminga CA, Carlsson A (2002) Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr Drug Targets CNS Neurol Disord 1:141–147CrossRefGoogle Scholar
  64. Ugrumov M, Melnikova V, Ershov P, Balan I, Calas A (2002) Tyrosine hydroxylase- and/or aromatic l-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance. Psychoneuroendocrinology 27:533–548CrossRefGoogle Scholar
  65. Vigouroux RJ, Belle M, Chedotal A (2017) Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol Brain 10:33. CrossRefGoogle Scholar
  66. Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123:451–481CrossRefGoogle Scholar
  67. Waymire JC, Weiner N, Schneider FH, Goldstein M, Freedman LS (1972) Tyrosine hydroxylase in human adrenal and pheochromocytoma: localization, kinetics, and catecholamine inhibition. J Clin Investig 51:1798–1804. CrossRefGoogle Scholar
  68. Yeo SH, Kyle V, Morris PG, Jackman S, Sinnett-Smith LC, Schacker M, Chen C, Colledge WH (2016) Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse. J Neuroendocrinol. 28. Google Scholar
  69. Zhu X, Xia Y, Wang X, Si K, Gong W (2017) Optical brain imaging: a powerful tool for neuroscience. Neurosci Bull 33:95–102. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de la VisionSorbonne Université, INSERM CNRS UMRS 968ParisFrance
  2. 2.Normandie Université, INSERM, U1239, DC2N, IRIB, UNIROUENMont-St-AignanFrance

Personalised recommendations